Reviewed Publications

by Louis Marmet

Papers discussing the ΛCDM Cosmology with observational data of interest to ACG, grouped in seven categories.

Table of contents

1. Redshift

Relationship between redshift, distance, time dilation; intrinsic redshift; evolution with expansion; quasars.

Probing the environment of high-z quasars using the proximity effect in projected quasar pairs, P. Jalan, H. Chand, R. Srianand, submitted to ApJ, arXiv:1809.04614, 2018

Can the H_0 tension be resolved in extensions to ΛCDM cosmology? R.-Y. Guo, J.-F. Zhang, X. Zhang, arXiv:1809.02340, 2018

Easily interpretable bulk flows: continuing tension with the standard cosmological model, S. Peery, R. Watkins, H.A. Feldman, Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 1, 2018. doi.org/10.1093/mnras/sty2332, arXiv:1808.07772

Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant, A.G. Riess et al., The Astrophysical Journal, Vol. 861, No. 2, 2018. iopscience.iop.org/article/10.3847/1538-4357/aac82e

The Carnegie-Chicago Hubble Program. IV. The Distances to NGC 4424, NGC 4526, and NGC 4536 via the Tip of the Red Giant Branch, D. Hatt et al., The Astrophysical Journal, Vol. 861, No. 2, 2018.  iopscience.iop.org/article/10.3847/1538-4357/aac9cc, arXiv:1806.02900

Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert, IceCube Collaboration, Science 361, 147–151 (2018) doi.org/10.1126/science.aat2890, science.sciencemag.org/content/early/2018/07/11/science.aat2890

A More Accurate and Competitive Estimative of H~0~ in Intermediate Redshifts, G.P. da Silva, A.G. Cavalcanti, Brazilian Journal of Physics, Vol. 48, Issue 5, p. 521, 2018.  doi.org/10.1007/s13538-018-0581-9, arXiv:1805.06849

Physical association and periodicity in quasar families with SDSS and 2MRS, C.C. Fulton, H.C. Arp, and J.G. Hartnett, Astrophys Space Sci (2018) 363:134.  doi.org/10.1007/s10509-018-3355-5, 2018 On Springer Nature SharedIt rdcu.be/S5Qa

Hubble Trouble: A Crisis in Cosmology? S. Chen, APS NEWS, Vol. 27, No. 5, May 2018.  www.aps.org/publications/apsnews/201805/hubble.cfm

Can the apparent expansion of the Universe be attributed to an increasing vacuum refractive index?, X. Sarazin, F. Couchot, A. Djannati-Ataï, M. Urban, arXiv:1805.03503, 2018

Has the density of sources of gamma-ray burts been constant over the last ten billion years? Y.-H. Sanejouand, arXiv:1803.05303

Lack of time-dilation in type Ia supernovae and Gamma-Ray Bursts, D.F. Crawford, arXiv:1804.10274, 2018

Elucidating ΛCDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy, G.E. Addison et al., ApJ 853 (2) 119 stacks.iop.org/0004-637X/853/i=2/a=119, arXiv:1707.06547 (2018 Jan. 30)

-01.2` Tight H~0~ constraint from galaxy redshfit surveys: combining baryon acoustic osillation measurements and Alcock-Paczynski test, Xue Zhang, Qing-Guo Huang, Xiao-Dong Li, arxiv:1801.07403, 2018

A problem with the analysis of type Ia supernovae 2017-12 D.F. Crawford, Open Astron., 26(1):111-119, 2017. DOI: doi.org/10.1515/astro-2017-0013

Marginal evidence for cosmic acceleration from Type Ia supernovae, 2016-10 J.T. Nielsen et al., Scientific Reports, 6:35596, 2016. DOI: 10.1038/srep35596

Reconciling Planck with the local value of H~0~ in extended parameter space, E. Di Valentino et al., Physics Letters B, Vol. 761, p. 242, 2016.  doi.org/10.1016/j.physletb.2016.08.043, arXiv:1606.00634, hal-01470237

A 2.4% determination of the local value of the Hubble constant, A.G. Riess et al., The Astrophysical Journal, Vol. 826, No. 1, 2016.  iopscience.iop.org/article/10.3847/0004-637X/826/1/56/meta, arXiv:1604.01424

Cosmological test with the QSO Hubble diagram, M. L[ó]{.js-about-item-abstr}pez-Corredoira, F. Melia, E. Lusso, G. Risaliti, Int. J. Mod. Phys. D 25, 1650060 (2016) doi.org/10.1142/S0218271816500607, arXiv:1602.06743

Astronomical redshifts of highly ionized regions, Peter M. Hansen, Astrophysics and Space Science, Vol. 352, Issue 1, pp. 235-244, July 2014 link.springer.com/article/10.1007%2Fs10509-014-1910-2, arxiv.org/abs/1301.1705

A simple Hubble-like law in lieu of dark energy 2014-01 Y.-H. Sanejouand, arXiv:1401.2919

The 2dF Redshift Survey. I. Physical Association and Periodicity in Quasar Families 2012-09 C.C. Fulton and H.C. Arp, The Astrophysical Journal, 754:134, 2012, iopscience.iop.org/0004-637X/754/2/134/

Discovery of a New Dimming Effect Specific to Supernovae and Gamma-Ray Bursts, T.B. Andrews, viXra:0909.0009, 2009

Sandage versus Hubble on the reality of the expanding universe, 2006-05 D.S.L. Soares, arXiv:physics/0605098

Survey of 4,000 Galaxies Finds “Downsizing” on a Cosmic Scale, 2005-08 National Optical Astronomy Observatory, noirlab.edu/public/news/noao0508/

Fundamental physical constant has not changed in 7 billion years, DEEP2 team reports 2005-04 University of California, Berkeley, spaceref.com/press-release/fundamental-physical-constant-has-not-changed-in-7-billion-years-deep2-team-reports/ www.berkeley.edu/news/media/releases/2005/04/18_deep2.shtml 2005-04-18

Redshifts of cosmological neutrinos as definitive experimental test of Doppler versus non-Doppler redshifts, C.F. Gallo, IEEE Transactions on Plasma Science, Vol. 31, Issue 6, Dec. 2003. 10.1109/TPS.2003.821579

A group of Quasi-Stellar Objects closely associated with NGC 1068, M. Burbidge, The Astrophysical Journal Letters, Vol. 511, No. 1, pp. L9–L11, 1999. iopscience.iop.org/1538-4357/511/1/L9/

2. Microwave Background

Blackbody spectrum, Sunyaev-Zel’dovich effect, dipole anisotropy.

Can Early Dark Energy Explain EDGES? J.C. Hill, E.J. Baxter, Journal of Cosmology and Astroparticle Physics, Vol. 2018, No. 8, 2018. doi:10.1088/1475-7516/2018/08/037, and arXiv:1803.07555

Can Conformal and Disformal Couplings Between Dark Sectors Explain the EDGES 21cm Anomaly? L.-F. Xiao, arXiv:1807.05541, 2018.

Universe opacity and CMB V. Vavryčuk, MNRAS, sty974, doi.org/10.1093/mnras/sty974, and arXiv:1706.04771

Alignments of parity even/odd-only multipoles in CMB, P.K. Aluri et al., Monthly Notices of the Royal Astronomical Society, Volume 472, Issue 2, 1 December 2017, doi.org/10.1093/mnras/stx2112, Also: arXiv:1703.07070

Planck reveals an almost perfect Universe, European Space Agency, www.esa.int/Our_Activities/Space_Science/Planck/Planck_reveals_an_almost_perfect_Universe

The `writing on the cosmic wall’: Is there a straightforward explanation of the cosmic microwave background? H.J. Fahr and J.H. Zönnchen, Annalen der Physik 18 (10–11) 699 doi: 10.1002/andp.200952110-1104 (2009)

New cosmic look may cast doubts on big bang theory University of Alabama News Release, spaceflightnow.com/news/n0508/02background/

History of the 2.7 K Temperature Prior to Penzias and Wilson, A.K.T. Assis and M.C.D. Neves, Apeiron, 2(3):79-87, July 1995. redshift.vif.com/JournalFiles/Pre2001/V02NO3PDF/V02N3ASS.PDF

3. Nucleosynthesis

Production of light elements, 6Li and 7Li.

First Direct Measurement of the 2H(α, γ)6Li Cross Section at Big Bang Energies and the Primordial Lithium Problem M. Anders et al. (LUNA Collaboration), Phys. Rev. Lett. 113, 042501 Published 21 July 2014, phys.org/news/2014-08-big-conditions-lithium-problem.html

The Lithium Content of the Galactic Halo Stars Charbonnel C. and Primas F., arXiv:astro-ph/0505247

Synthesis of the Elements in Stars Burbidge E.M. et al., Rev. Mod. Phys. 29, 547 (1957)

4. Large Scale Structure

Galaxy rotation curves, galaxy superclusters; dark energy; dark matter; black holes.

A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework, J.S. Farnes, Astronomy and Astrophysics 620, A92, Dec. 2018.  doi:10.1051/0004-6361/201832898, and arXiv:1712.07962

The XXL Survey XXV. Cosmological analysis of the C1 cluster number counts, F. Pacaud et al., A&A 620, A10, 2018.  doi:10.1051/0004-6361/201834022, and arXiv:1810.01624

Evidence of a Flat Outer Rotation Curve in a Starbursting Disk Galaxy at z = 1.6, P.M. Drew et al., Accepted for publication in the Astrophysical Journal, 2018. arXiv:1811.01958

The hidden giant: discovery of an enormous Galactic dwarf satellite in Gaia DR2 G. Torrealba et al., Submitted to the Monthly Notices of the Royal Astronomical Society. Nov. 2018. arXiv:1811.04082

Shedding light on the Milky Way rotation curve with GaiaDR2, M. Crosta et al., arXiv:1810.04445

Challenging a Newtonian prediction through Gaia wide binaries, X. Hernandez et al., arXiv:1810.08696

Can the Dark-Matter Deficit in the High-Redshift Galaxies Explain the Persistent Discrepancy in Hubble Constants? Y.V. Dumin, Proceedings of Cosmology on Small Scales, Michal Krizek and Yurii Dumin (Eds.), Institute of Mathematics CAS, Prague, Sept. 2018.  http://css2018.math.cas.cz/, and arXiv:1804.00562

Problems with the dark matter and dark energy hypotheses, and alternative ideas, M. Lopez-Corredoira, Proceedings of Cosmology on Small Scales, Michal Krizek and Yurii Dumin (Eds.), Institute of Mathematics CAS, Prague, Sept. 2018.  http://css2018.math.cas.cz/, and arXiv:1808.09823

Constraint on the Existence of Dark Matter Haloes by the M81 Group and the Hickson Compact Groups of Galaxies, W. Oehm, P. Kroupa, Proceedings of Cosmology on Small Scales, Michal Krizek and Yurii Dumin (Eds.), Institute of Mathematics CAS, Prague, Sept. 2018.  http://css2018.math.cas.cz/, and arXiv:1811.03095

Predictions for the sky-averaged depth of the 21cm absorption signal at high redshift in cosmologies with and without non-baryonic cold dark matter, S. McGaugh, Phys. Rev. Lett. 121, 081305, August 2018, 2018.  doi:10.1103/PhysRevLett.121.081305, and arXiv:1808.02532

An Enigmatic Population of Luminous Globular Clusters in a Galaxy Lacking Dark Matter, P. van Dokkum et al., The Astrophysical Journal Letters, 856:L30, April 1, 2018. doi.org/10.3847/2041-8213/aab60b, arXiv:1803.10240

A smooth exit from eternal inflation? S.W. Hawking and T. Hertog, J. High Energy Phys., Vol. 147 doi.org/10.1007/JHEP04(2018)147, and arXiv:1707.07702

Probing the Cosmological Principle in the counts of radio galaxies at different frequencies Carlos A. P. Bengaly et al., Journal of Cosmology and Astroparticle Physics, JCAP04(2018)031, doi.org/10.1088/1475-7516/2018/04/031

A galaxy lacking dark matter P. van Dokkum et al., Nature, Vol. 555, pp. 629–632, 2018. www.skyandtelescope.com/astronomy-news/a-galaxy-without-much-dark-matter/

Observations contradict galaxy size and surface brightness predictions that are based on the expanding universe hypothesis, E. Lerner, Monthly Notices of the Royal Astronomical Society, sty728, March 2018. dx.doi.org/10.1093/mnras/sty728

What is our Universe now? For the century of the formula 15 written by de Sitter M. Mizony, hal-01629125

A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology O. Müller et al., Science, Vol. 359, No. 6375, pp. 534–537, Feb. 2018. arXiv:1802.00081

Cosmological-scale coherent orientations of quasar optical polarization vectors in the Planck era Surviving to Galactic dust contamination scenario, V. Pelgrims, arXiv:1709.10271, 2017.  arxiv.org/abs/1709.10271

Small-Scale Challenges to the $Lambda$CDM Paradigm, J.S. Bullock and M. Boylan-Kolchin, Annual Review of Astronomy and Astrophysics 55, No. 1, pp. 343-387 (2017) doi.org/10.1146/annurev-astro-091916-055313, arXiv:1707.04256

A High Stellar Velocity Dispersion and ~100 Globular Clusters for the Ultra Diffuse Galaxy Dragonfly 44, P. van Dokkum et al., The Astrophysical Journal Letters, Vol. 828, No. 1, 2016.  iopscience.iop.org/article/10.3847/2041-8205/828/1/L6

Dark matter component decaying after recombination: lensing constraints with Planck data, A. Chudaykin, D. Gorbunov, I. Tkachev, Phys. Rev. D 94, 023528 (2016).  journals.aps.org/prd/abstract/10.1103/PhysRevD.94.023528, arXiv:1602.08121

Massive Structures of Galaxies at High Redshifts in the Great Observatories Origins Deep Survey Fields, E. Kang, M. Im, Journal of The Korean Astronomical Society, Vol. 48, Issue 1, pp.21-55, Feb. 2015.  dx.doi.org/10.5303/JKAS.2015.48.1.21, arXiv:1512.09282

Galaxies as simple dynamical systems: observational data disfavor dark matter and stochastic star formation, P. Kroupa, Canadian Journal of Physics, 93(2): 169-202, 2015.  doi.org/10.1139/cjp-2014-0179, arXiv:1406.4860

Molecular Hydrogen as Baryonic Dark Matter 2014-04 A. Heithausen, The Astrophysical Journal, 606:L13L15, 2004, iopscience.iop.org/article/10.1086/421111/meta

A possible influence of magnetic fields on the rotation of gas in NGC 253 2012-11 J. Jałocha et al., MNRAS, 427(1):393-396, Nov 2012. arXiv:1210.3082

Method for Analyzing the Spatial Distribution of Galaxies on Gigaparsec Scales. ii. Application to a Grid of the HUDF-FDF-COSMOS-HDF Surveys 2010-02 N.V. Nabokov and Yu.V. Baryshev, Astrofizika, 53(1):117-129, February 2010. arXiv:1004.1800

Spitzer and Hubble Team Up to Find Big Baby Galaxies in the Newborn Universe 2005-09 B. Mobasher - ESA, hubblesite.org/news_release/news/2005-28

Hubble Finds Mysterious Disk of Blue Stars Around Black Hole, 2005-09 R. Bender et al., hubblesite.org/news_release/news/2005-26

Gemini Uncovers ‘Lost City’ of Stars 2005-08 J. Bland-Hawthorn et al. - Gemini Observatory, www.gemini.edu/node/144

Modified Newtonian Dynamics in the Milky Way 2005-06 B. Famaey and J. Binney, arXiv:astro-ph/0506723

Bigger ‘birthmarks’ in the sky may deflate theory of cosmic inflation, University of Alabama, Huntsville, https://spaceref.com/press-release/bigger-birthmarks-in-the-sky-may-deflate-theory-of-cosmic-inflation/ (2005 April 19)

Fractal dimensions of the galaxy distribution varying by steps?, 2005-04 M.-N. Celerier and R. Thieberger, arXiv:astro-ph/0504442

From galaxy collisions to star birth: ISO finds the missing link, 2005-03 European Space Agency, www.esa.int/Our_Activities/Space_Science/From_galaxy_collisions_to_star_birth_ISO_finds_the_missing_link

NASA’s Spitzer Space Telescope Exposes Dusty Galactic Hideouts, 2005-03 NASA - Jet Propulsion Laboratory, www.spitzer.caltech.edu/news/188-ssc2005-08-NASA-s-Spitzer-Space-Telescope-Exposes-Dusty-Galactic-Hideouts

A high abundance of massive galaxies 3-6 billion years after the Big Bang, K. Glazebrook et al., Nature 430 181 https://www.nature.com/articles/nature02667 (2004 July 8)

A Dearth of Dark Matter in Ordinary Elliptical Galaxies 2003-08 A.J. Romanowsky et al., Science, 301:1696-1698, Sep 2003. arXiv:astro-ph/0308518

5. Old Systems

Highly evolved galaxies at high redshifts; stellar systems.

The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at z = 2.45 in VUDS, O. Cucciati et al., A&A 619, A49, 2018.  doi:10.1051/0004-6361/201833655, and arXiv:1806.06073

Anisotropic winds in a Wolf–Rayet binary identify a potential gamma-ray burst progenitor, J. R. Callingham et al., Nature Astronomy, 19 Nov. 2018.  doi:10.1038/s41550-018-0617-7

An Ultra Metal-poor Star Near the Hydrogen-burning Limit, K.C. Schlaufman et al., The Astrophysical Journal, Vol. 867, No. 2, 2018.  doi:10.3847/1538-4357/aadd97}, and arXiv:1811.00549

The Discovery of A Luminous Broad Absorption Line Quasar at A Redshift of 7.02, F. Wang et al., ApJL in press, 2018. arXiv:1810.11925

The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk, A. Helmi et al., Nature, Vol. 563, p. 85, Oct. 2018. doi:10.1038/s41586-018-0625-x, and arXiv:1806.06038

The onset of star formation 250 million years after the Big Bang, T. Hashimoto et al., Nature 557, 392, May 2018.  doi:10.1038/s41586-018-0117-z, and arXiv:1805.05966

A massive, dead disk galaxy in the early Universe, S. Toft, et al., Nature, Vol. 546, pp. 510-513, June 22, 2017.  dx.doi.org/10.1038/nature22388, arXiv:1706.07030

Ages of 70 Dwarfs of Three Populations in the Solar Neighborhood: Considering O and C Abundances in Stellar Models, Z.S. Ge et al., The Astrophysical Journal, Vol. 833, Issue 2, article id. 161, Dec. 2016.  doi:10.3847/1538-4357/833/2/161, and arXiv:1612.01622

Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies at z ~ 1, E.M. Di Teodoro, F. Fraternali and S. H. Miller, Astronomy and Astrophysics, 594, A77, 2016.  doi.org/10.1051/0004-6361/201628315, arXiv:1602.04942

The Impossibly Early Galaxy Problem, C.L. Steinhardt et al., The Astrophysical Journal, Vol. 824, No. 1, p. 21, June 2016. iopscience.iop.org/0004-637X/824/1/21/

A dusty, normal galaxy in the epoch of reionization D. Watson et al., Nature (2015 March 2) doi:10.1038/nature14164, www.nature.com/nature/journal/vaop/ncurrent/full/nature14164.html, also: arXiv:1503.00002

The Most Luminous z ~9-10 Galaxy Candidates Yet Found: The Luminosity Function, Cosmic Star-Formation Rate, and the First Mass Density Estimate at 500 MYR, P. A. Oesch et al., Astrophysical Journal 786, 108, 2014.  iopscience.iop.org/0004-637X/786/2/108, arXiv:1309.2280

A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51, S.L. Finkelstein et al., Nature 502, 524–527, 24 October 2013.  nature.com/articles/nature12657, arXiv:1310.6031

CANDELS: The Correlation Between Galaxy Morphology and Star Formation Activity at z~2, B. Lee et al., The Astrophysical Journal, Vol. 774, No. 1, 2013.  iopscience.iop.org/0004-637X/774/1/47/, www.sciencedaily.com/releases/2013/08/130815083953.htm

HD 140283: A Star in the Solar Neighborhood that Formed Shortly after the Big Bang, H.E. Bond et al., The Astrophysical Journal Letters, Vol. 765, Issue 1, article id. L12, 2013.  doi:10.1088/2041-8205/765/1/L12, and arXiv:1302.3180

VLT Observations of Gamma-ray Burst Reveal Surprising Ingredients of Early Galaxies, S. Savaglio, ESO1143 - Science Release, 2011, www.eso.org/public/news/eso1143/

An extremely primitive halo star, E. Caffau et al., Nature, 477:67-69, Sep 2011. arXiv:1203.2612

Star death beacon at the edge of the universe, Guido Chincarini - AAAS, www.eurekalert.org/pub_releases/2005-09/eso-sdb090905.php

Spitzer Finds Life Components in Young Universe, NASA - Jet Propulsion Laboratory, www.jpl.nasa.gov/news/news.php?release=2005-123

The supernova that just won’t fade away, European Space Agency, www.esa.int/Our_Activities/Space_Science/The_supernova_that_just_won_t_fade_away

Will oldest known dust disk ever form planets? Harvard-Smithsonian Center for Astrophysics News Release, spaceflightnow.com/news/n0507/18dustdisk/

First Planet Under Three Suns Is Discovered, Jet Propulsion Laboratory https://phys.org/news/2005-07-planet-suns.html

Running Difference Imaging - The Gas Model Crumbles! Michael Mozina, data: TRACE and SOHO, www.thesurfaceofthesun.com/running.htm

First Stars Seen In Distant Galaxies Royal Astronomical Society (2005) spaceflightnow.com/news/n0504/08firststars/, www.sr.bham.ac.uk/nam2005/pr10.html

Old Star’s Rebirth Gives Astronomers Surprises, National Radio Astronomy Observatory, www.nrao.edu/pr/2005/sakurai/ (2005)

Earliest Massive Cluster Of Known Galaxies Discovered, Garching (SPX), www.spacedaily.com/news/cosmology-05h.html (2005)

Galaxy Clusters Formed Early, National Astronomical Observatory of Japan - Subaru Telescope, www.subarutelescope.org/Pressrelease/2005/02/16/index.html

The Discovery of Primeval Large-Scale Structures with Forming Clusters at Redshift 6, Ouchi M. et al., arXiv:astro-ph/0412648

Precocious black holes challenge theories, NASA - Chandra X-ray Observatory, spaceflightnow.com/news/n0411/28blackhole/ (2004)

Hubble’s Deepest View Ever of the Universe Unveils Earliest Galaxies, NASA - Hubble; News Release number: STScI-2004-07, hubblesite.org/news_release/news/2004-07 (2004)

Giant Galaxy String Defies Models Of How Universe Evolved, NASA - Goddard Space Flight Center, www.nasa.gov/centers/goddard/news/topstory/2004/0107filament.html (2004)

The Age of Large Globular Clusters of Galaxies F. Zwicky, Publications of the Astronomical Society of the Pacific, Vol. 72, No. 428, p.365 (1960 Oct.) doi:10.1086/127558

6. ΛCDM Cosmology

Towards a More Well-Founded Cosmology, Hartmut Traunmüller, Zeitschrift für Naturforschung A73, Issue 11, p. 1005, 2018.  doi:10.1515/zna-2018-0217, and arxiv:1107.2529 (2018)

Cosmological discordances II: Hubble constant, Planck and large-scale-structure data sets, W. Lin and M. Ishak, Physical Review D 96, p. 083532, Oct. 2017. arXiv:1708.09813 (2017)

Tests and problems of the standard model in Cosmology, M. Lopez-Corredoira, Foundations of Physics, 47:711 arXiv:1701.08720 (2017)

The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology, P. Kroupa, Publications of the Astronomical Society of Australia, 2012, 29, 395433, dx.doi.org/10.1071/AS12005 (2012)

The well-earned Nobel Prize for the wrong reason, P. Ostermann, peter-ostermann.org/assets/nobel-prize-physics-2011.pdf (2011)

Observational evidence favors a static universe, D.F. Crawford, Journal of Cosmology, 13:1-72 arXiv:1009.0953 (2011)

Big Bang not yet dead but in decline 1995-09 Maddox J., Nature, 377, p. 99 www.nature.com/articles/377099a0 (1995 Sept.)


For if we are uncritical we shall always find what we want: we shall look for, and find, confirmations, and we shall look away from, and not see, whatever might be dangerous to our pet theories. In this way it is only too easy to obtain what appears to be overwhelming evidence in favor of a theory which, if approached critically, would have been refuted.

Karl Popper, The poverty of historicism. Beacon Press, Boston, Mass; 1957)


© 2018–2024 Louis Marmet