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Theory of the Redshift of the Spectral Lines of
S Cosmological Objects

A. Kipper

To interpret the peculiarities of the redshifts of the spectral
tes of light coming from distant cosmic objects, the author
a previous report put forward a hypothesis according to
1ch cosmological space conducts electricity and thus is able
absorb electromagnetic radiation which passes through it. In
> present report the author gives this theory a deeper
soretical motivation, developing the quantum theory of
:ctromagnetic radiation in the absorbing medium, i. e. cosmo-
yical vacuum.

Introduction

The discovery of quasars, their spectroscopic and photo-
tric study have raised several new problems the solution of
lich is of interest to extragalactic astronomy and cosmology
well as theoretical physics. Of special interest are the values
the redshift derived from the measurements of the spectral
es of quasars, as they have brought out a number of
"prising effects. It appeared, for example, that the quantity
of the absorption-line redshift is often multiple, that the
ues of z accumulate around the quantity z=2 and that
- quasars with 2>2 are rather rare (G. R. Burbidge &
M. Burbidge [1]). It is also interesting that the correlation
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between apparent radio brightness and the value z is almost
entirely missing. '

The author of the present paper has tried to explain several
peculiarities of the redshifts of quasars and very remote
cosmological objects in general with the quantum theory of
electromagnetic waves adjusted to cosmological problems.
The main features of this theory and its use in the explanation
of the peculiarities of the redshifts of cosmological objects are
presented in our paper “On Peculiarities of Quasar Red-Shifts
and Hypotheses of Explain Them” [2]. The aim of the present
paper is to give the theory of cosmological quantum electro-
dynamics a deeper theoretical motivation than has beerr done i
the above-mentioned investigation. For a more general survey
a brief summary of the paper mentioned will be given below.

The redshift of the spectral lines of cosmological objects
is almost without exception interpreted as a result of the
Doppler effect. The idea of the redshiit being a result of the
light quantum “fatigue”, the continuous loss of energy in the
course of long-time travelling in traversing cosmological
distances has been expressed very seldom. Contemporary
theoretical physics does not seem to offer any clue to the
explanation of this phenomenon. That is why the hypothesis
of the continuous loss of light quantum energy as a cause of
the redshift has not been paid attention to.

On the other hand, the most characteristic feature of
contemporary physics lies in assigning different physical
properties to the vacuuin. For instance, the electric field
poiarizes the vacuum analogically to a dielectric and there is
nothing peculiar if the vacuum is also a conductor of electri-
city analogically to a medium conducting electricity.

The supposition concerning the electric conductivity of the
vacuum arouses attention also because it follows, at least for-
mally, from the covariant form of the Maxwell equations
written for an isotropic and homogeneous universe, e. g. for
the de Sitter universe. It appears that these equations have a
certain additional cosmological term which can be interpreted
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in short as the conduction current in the medium whose
electric conductivity coefficient ¢ is constant. This extremely
small quantity serves also as the electric conductivity coeffi-
cient of the cosmological vacuum. However, the medium
conducting electricity absorbs the electromagnetic wave energy
passing through the medium. Consequently, the cosmological
vacuum possesses the ability to absorb the radiation propagat-
ing in it.

Since the electric conductivity coefficient of the vacuum o
is constant, the Maxwell equations together with the additional
cosmological term are still linear. They can be successiully
solved by means of the Fourier method by which the waves
should be treated as the superposition of monchromatic waves.
In the case of an ordinary (not a cosmological) vacuum it
follows from the Maxwell equations that the previously
mentioned monochromatic waves have a constant amplitude
and a time-independent frequency. Consideration of the cosmo-
logical term in the equations, however, shows that the amplitude
of electromagnetic waves decreases exponentially with time £
This is where the ability of the cosmological vacuum to
absorb the radiation passing through it becomes apparent.
On the other hand, the frequency of the waves is still a time-
independent constant. Since the redshift effect of the spectral
lines of distant cosmological objects finds its expression in
the change of the frequency of waves, the Maxwell equations
cannot give, as expected, the redshift formula even with the
cosmological term.

As is generally known, the formula of the redshiit is not de-
rived by means of the Maxwell equations. The redshift
formula can be found by using the basic metric form. By
means of that the relation of the light wavelength as well as
frequency at the points of the universe far from one another
are calculated. As a result we get the redshift formula. The
fact that the difference of the metric tensor g,y from its pseudo-
Fuclidean value gives the additional cosmological term in the
Mazxwell equations, although despite this additional term the
redshift effect cannot be explained by these equations, has
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evidently a deeper reason. The theory of electromagnetic waves
in its classical form is apparently not suitable for solving
some cosmological problems.

The Maxwell equations emphasize the wave aspect of
electromagnetic radiation. The corpuscular character of the
radiation becomes evident only through quantizing these
equations. A quantized electromagnetic wave consists of
photons, the photon energy being the product of its frequency
and the Planck constant. Photon energy can decrease only
with a decrease in frequency. Therefore, quantizing the Max-
well equations with the additional cosmological term it is to
be expected that they should also give the redshift formula.

A closer examination of the problem indicates the fact that
according to the quantized Maxwell equations the energy ol
the electromagnetic wave in the cosmological vacuum may
decrease in two possible ways. It may take place with a
decrease in frequency, as mentoned already, as well as with
a decrease in the photon number related to the wave. In the
former case the process is continuous in time, in the latter-
discrete. In the work under review [2] the possibility of the
two processes was shown and the assumption was checked by
observational data. Almost all the peculiarities of the redshift
of quasars were explained there.

In the same investigation the Maxwell equations have
been quantized by the method in use in the quantum theory.
The radiation field is treated as an ensemble of harmonic
oscillators which in a certain quantum state have the quantum
number n and the energy

E:ﬁw(n+—%—), (0.1)

where @ is the frequency of the oscillator as well as that of
the corresponding monochromatic wave. In the classical
vacuum, not in the cosmological one, both n and « are time-
independent constants.

The ability of the vacium to be a conductor and hence ar¥
absorber of energy is expressed by the fact that both n and
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& change in time. For the frequency ¢ the following formula
tiolds true:

w=wo exp[—4no (t — 1) ], (0.2)

where wy is the frequency of the wave considered at its forma-
tion or excitation moment ¢ =+, and ¢ is the vacuum electric
conductivity coefficient. The decrease of the frequency o with
time ¢ according to (0.2) is the redshift effect.
Formula (0.2) is valid up to the moment
1 2n+1

h=tob Aty Atn=—In s

(0.3)

by which according to (0.2) and (0.3) the wave energy will
have decreased due to the absorption effect of the vacuum
exactly by one quantum

ﬁwo, (0.4)

where @, is the wave frequency at the excitation moment to.
Further the process may continue in two ways.

In the first case, at the moment { =1, a change in the
quantum number of the wave takes place,

n—n—1, (0.9)

while the previous frequency wo is restored. The second case
gives no change in n and the decrease of the wave frequency
continues according to (0.2), while >, then. Which of the
possibilities is realized is regulated by a certain statistical
law, which is typical of quantum physics.

Formulae (0.2) and (0.3) are the main result of our investi-
gation [2] and they enable one to explain several peculiarities
of the redshifts of cosmological objects. In the following
paragraphs an attempt will be made to motivate these basic
formulae more stringently, considerably improving the quantum
theory of the electromagnetic radiation in an electricity-conduct-
ing medium. Besides, the conducting medium need not be the.
cosmological vacuum, it may also be some real matter. How-
ever, the theory can still be mainly applied in the field of
cosmology.
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§ 1. Canonical Formalism

The equations of electromagnetic waves (the Maxwell
equations) in the covariant presentation are the following:

dFua_l_{ i }F“U_{- {aoa} Fue—0,

dxg ag

OFyw | OFw | 0Fo,
Oxs ' Oxy | Oxy =0, (1.1

where F,, is the electromagnetic field tensor, the other sym-
bols are common with the general theory of relativity. The
components of the metric tensor gy necessary for the calcula-
tion of the Kristoffel symbols occurring in equations (1.1)
are obtained from the basic metric form

ds?=dx2 — exp( %:_r a%—) - (dx? 4 dx%+di), (1.2)

which determines the space-time metric. Here x4==ct, where
{ is time and c¢ is the velocity of light. The constant ¢ is
interpreted as the vacuum electric conductivity coefficient in
the present paper. In the cosmological theories that are based
on the basic metric form (1.2) the constant ¢ is proportional
to the Hubble constant

H=4—§r— 0=24-10"18 sec1

The basic metric form (1.2) provides the basis for the so-
called steady-state cosmology developed mainly by Bondi and
Gold (Bondi and Gold 1949) but for the first time used by
W. de Sitter in his studies [4].

Using, for the sake of clarity, the electric field vector €
and the magnetic field vector & instead of the electromagnetic
field tensor Fy,, and applying the usual symbols of vector
analysis, equation system (1.1) can be obtained in the following
form:
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1 ¢ 4mo
rOt@——T*a"—t-@——E—-(, 0
rot @—{-—1——0—&3:0,
c Ot
(1.3)
div €=0,
div =0,

Here and further Gothic letters are used to denote vectors.

To solve equation system (1.3), a well-known technique
with the application of the vector potential % and the scalar
potential @ is used,

1 oU
G—--—-——E—-W-—grad@, (1.4)
=rot¥,
while the supplementary Lorentz condition should hold true:
o, 1 00 4dmg .
dlvl[—l—c T + - &=0. (1.5)

Then the Maxwell equations (1.3) yield
1 02  4mo oA

_AQH_FZ" ot? + 2 ot =0, (1.6)
1 00  4m0 OQ '
A®+ 0t2 + ¢ ot =0.
Applying the Fourier method for solving (1.6), we write
" 1
N= — qr-exp[i(kx) ] -exp[2na(t —to)]-d°k (1.7)
(27)3 f W' :

while

©,=¢hl=c(k2+-R2{k2)"%,
d*k=dky dk; dks.

(1.8)

)

The Fourier component, vector qr, is actually supplied with
three indices kjkoks. But for the sake of brevity

Qx &k, = Qk,

the abbreviation being used also further on.
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The symbol
(k)C) = X1k1+ngz+X3k3

is the scalar production of the vectors x = (X1Xox3) and
k = (kkoks). (By way of exception Latin letters are used to
denote vectors).

On the analogy of formula (1.7) for the scalar potential
@ is also written

c

D= ©n) f wl% pr-expli(kx)}-exp[—2a0(t — o) ]-d*k. (1.9)

The Fourier components, the vector gqx and the scalar g
are the functions of time ¢. The following equations hold:

e 2
qh+%h Qk—"‘“oy (110)

etk pr=0,
‘while
KZ :CZIklZ___4n20-2:w2 __4‘%202. (111)

From the additional conditions (1.5) the following relation is
added to equations (1.10):

. 2 1
l(qu)-l—i;g‘ th-I—“C—(i)h:O. (1.12)

To satisfy equation (1.12), three unit vectors are used
N R (1.13)

which are defined as follows: the vector e’ is-chosen in the
direction of the vector k== (kikoks), so that

b=|kl-e. (1.14)

The other two vectors ¢ and ¢® while being orthogonal to
each other are also orthogonal to the vector ex®.

Fourier integrals (1.7) and (1.9) indicate that electro-
magnetic waves are regarded as a result of the superposition
of single waves with a definite wave-length, frequency and

propagation direction. The vector e)" is in the direction of
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propagation of the wave, the vectors ex® and e,® are orthogo-
nal to it. They determine the wave polarization plane and are
the wave polarization vectors.

It is obvious that each vector gx can be expressed as follows:

S e A (115)

where the quantities ¢¢ are the projections of the vector aa
to the axes determined by the unit vectors ex®. From equations
(1.10) it is easy to obtain

F9+a2q=0, s=1,23 (1.16)
%2 =@} — 4n*a?,

while the supplementary condition (1.12) yields:

iwngy) +-4moputgn=0. (1.17)

The supplementary condition relates the Fourier components
g'¥ and @, it does not concern the components ¢ and ¢}

Therefore, to study the electromagnetic radiation field it is
sufficient to deal with the components g% and ¢ and consider

the supplementary condition fulfilled automatically.
If we take ’

1
Hy=—{0, (Pg*+452) +2a0 (pPa7+a0p)} - (118)

as the Hamilton function, equations (1.16), where s=2; 3,
can be presented in canonical form. Here the Hamiltonian of
the whole field is the sum of the Hamiltonians of the single
waves
3 i
H=>3 | Hod*. (1.19)

s==2
The quantites p§ and g are the canonical variables of
the field. The Hamilton canonical equations
oH oH

—d—p—(é,—-——q(ﬁf), W:“Pf) (1.20)

6 ITy6amkanun TAO
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give equations (1.16). In canonical variables the vectors €&
and © of the electric and magnetic fields can be expressed as

3

1 :
(S:mE (ng)3 f(if(;‘)exp[t(kx)]-exp[—?:zw(t——to)]-d%, (1.21)

H= 2 (Qﬂ)s [ 99+ expli (kx) I -exp[—270(t — 1) 1-d%, (1.22)

whlle -
EY=—e-@'1p?, (1.23)
N S SN
‘D(g)z_r[c(;)xctéi] ..whbq(;), ( 124)
arnd the symbol
[e(ﬁ:)xeti)]

is the vectorial product of the vectors ¢ and e¢. The energy
ol the electromagnetic field

Em——— f (G2 §2) a3k (1.26)

can be calculated by means of formulae (1.21) and (1.22). As a
result, we obtain

1
E= zf EY d3, (1.27)

§==32

where

1 .
Ep—=—0,(pi*+qs?) -exp[—dao(t—1)].  (1.28)

The energy E'® given by formula (1.28) is that of a single wave.
According to (1.27)}, the energy of the whole field is the sum
of the energies of all the single waves.

Contrary to the Hamiltonian H® the energy E'® depends
explicitly on the time f, namely through the exponential function
in (1.28).

In what follows we shall mainly deal with single waves
and their energies. For the sake of simplicity it is expedient to



Redshift of the Speciral Lines of Cosmological Objects 83

drop the indices denoting a single wave, e. g. instead of ¢

one may write g, etc. Such a simplification should not cause
any confusion. If there is still a danger of misunderstanding,
the indices are restored in their previous form.

After calculating the partial derivatives the Hamiltonian

canonical equations are the following:

g=wp-+279q, ' (1.29)

—p=wq-+270p
the solutions of which are

= (_@_)“ {a-exp[ixt]+at+-exp[—ixt]},

2% (1.30)
_ _(?_ﬁ__)"‘ Qsto—i xt]+ (2motix)at ixt])
P=\g5~ {(2mo—ix)a-exp[irt]+( aotix)at-exp[—ixt]},

where a and a* are integration constants. Using the solutions
(1.30), the Hamiltonian and the energy can be calculated.
The results of the calculations are

H:ﬁw--—éﬂ-(aa++a+a),
(1.31)

fi
E = {w?(aat+ata)+2m0 (270 — ix) a?-exp[2ixt]+

4270 (2no-t-ix) at?-exp [—2ixt]} -exp[—4mo(t — o) ] (1.32)

It should be remembered that indices have been dropped in
these formulae. The Hamiltonian (1.31) and the energy (1.32)
are those of a single wave.

[t deserves emphasizing that according to (1.31) H is
time-independent or, in other words, the constant of the
problem. The energy, however, depends on the time t due to
the occurrence of the periodic terms

exp(2ixt), exp (—2ixt) (1.33)
as well as the term exponentially decreasing in time

exp[—4mno(t —t) ] (1.34)

6‘
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in the corresponding formula. The dependence through the
periodic terms is after all inssential. Indeed, to measure the
wave energy one must spend time considerably longer than
is the duration of one oscillation period,

2n
Y

The mean value of energy for this time interval is
E_=~£—— w?(aat+a+a) expl—4ag (t —ty) ], (1.35)

since the mean values of periodic terms (1.33) are zeros,

§ 2. Quantum Theory of Electromagnetic Waves in a
Conducting Medium. First Approximation

With the presentation of the equations of electromagnetic
waves in canonical form the necessary preliminary work has
been done to quantize the electromagnetic waves in a medium
conducting electricity. Following the traditional quantum theory
cf fields, the field canonical variables p and ¢ must be treated
as the operators satistying the basic commutation rules:

Py P2 1=14¥, ¢1=0,
5 (2.1)
[P, 4 1= (k— k') -6
while
F(k—R)=¢(ky— k)6 (ky — k'2) (ks — k'3),
[P, q)1=pq— qp.
Being the solutions of the Hamilton canonical equations, the
operators p and g¢ depend on time as given in expressions
(1.30). Here a and at+ are integration constants which should

now be regarded as time-independent operators. Relying on
formulae (2.1), it is possible to derive the commutation rule

[a,at]=]1. (2.2)
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In the traditional quantum theory of the eleciromagnetic
field the operators a and a* are those of creation and anni-
hilation of photons. On the analogy of the traditional quantum
theory of fields the operator

N—=—aa* (2.3)
is also called the particle number operator, here, however, the
photon number operator. Its eigenvalues are all positive
integers, including zero. The Hamiltonian is related to the
operator by a simple formula

H=ﬁx( 9}+—12—) . (2.4)

The energy operator E may also be expressed by using the
operator M in the following way:

Ez%{w2(2%+ 1) 4270 (270 — ix)a?-exp[2ixt]

4270 (2n0+ix) at?-exp[—2ixt]} -exp[—4no (t—1t) ] (2.5)

In the derivation of this formula (1.32) and (2.3) have been
used.

The Hamiltonian (2.4) is independent of the time 1. In
contrast to the Hamiltonian the energy operator depends on
time and this dependence is expressed in (2.5) by the periodic
terms as well as by the factor exponentially decreasing with
time. However, taking the time average of the energy operator
E, as in deriving formula (1.34), we get

JQ—ﬁw(er—lz-)-exp[—4no(t-—to)], (2.6)

in which we substituted

E=

2H=0.

Such a substitution simplifies the corresponding formulae and
it is justified in the case of cosmological problems since the
error caused is negligible. So, below (2.6) will be used as.
an expression of the energy operator because of its simplicity
and easier interpretation. It should be noted that in the

presentation where RN is diagonal, the operator E is also
diagonal.
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Let us interpret the results obtained.
An electromagnetic wave with the frequency o is excited
at the moment f=1,. Then a wave consisting of n photons

appears and the energy of the wave is
E}:ﬁw(w+%}y (2.7)

since the exponential factor in (2.6) is unity and n is the
corresponding eigenvalue of the operator 9. At the lollowing
moments ¢>>f, the photon number n is constant since the
operator 9t and its eigenvalue do not depend on time. The
energy, however, decreases according to the following formula:

,E:Eo-exp[u—-ﬁlﬂa(t —t) | ="iw- (n—{—;—) cexp[—4ao(f —to) ].
(2.8)

The energy of a single photon is
e="Fw-exp[—4mxo(t — to) ] (2.9)

and it also decreases exponentially with the time t.

The theory developed up to here in the present paper is an
application of the traditional quantum theory of fields to the
investigation of the electromagnetic radiation in conducting
medium. Up to now not a single new idea has been used
which has not been applied in the already well-established
quantum physics. The results have been summed up in (2.8).
However, this formula is not in accordance with the observa-
tional data and, above all, with the redshift law of the
spectral lines of cosmological objects.

One of the basic statements in quantum physics is that
the energy of a photon is the product of the Planck constant
and the frequency of the photon,

e="iw. (2.10)

According to this, the energy of a photon decreases only at
the expense of a decrease in frequency, not as given in (2.9),
where the frequency w is an invariable quantity. In the author’s
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previous study [2] this contradiction was removed by an
independent postulate according to which at the moment 1

the actually observed frequency w i$ related to the frequency @
through the formula

0=w-exp[—A4xa(t —to) ]. (2.11)

Consequently, in (2.9) the observable quantity is not o but
the product of w and e—mot—t) according to (2.11). This
postulate, intuitively introduced into the theory, requires more
motivation which we intend to give in the following chapter.

§ 3. Quantum Theory of Electromagnetic Waves in an
Electricity Conducting Medium. Second Approximation

The quantization of the Maxwell equations did not yield
the desired results at first. The redshift formula (2.11) could
be introduced into the theory only as an independent postu-
late. In order to give some deeper reasons for this postulate,
it is necessary to analyze these differences in the problem
caused by a conducting medium as compared with the problem
where the classical vacuum serves as a medium.

In the quantum theory ofi the radiation field an important
role is played by the Hamiltonian and the energy operator.
In a non-conducting medium they both are equal quantities
not depending on the time £.

The situation changes when the field is in an electricity~
conducting and consequently energy-absorbing medium. The
Hamiltonian and the energy are different whereas the energy
expression contains the time ¢ in an expticit form. This circums-
tance is of decisive importance for the further development of
the quantum theory of the radiation field.

Let us analyze the problem providing that in the beginning
electromagnetic radiation is in an ordinary vacuum which does
not absorb this radiation. In this case the Hamiltonian and
the energy are identical.
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The radiation field is regarded as an ensemble of harmon
oscillators. An oscillator corresponds to each monochromat
wave and the investigation of the radiation field is reduce
to the study of oscillators. All the basic qualities and motic
rules of the oscillator, hence also those of a monochromat
wave, are obtained from the solutions of the Schrédinge
equation

i oY

Hipq)¥=——5-, (3.1

which is the basic equation of the wave theory of matter. Tt
function ¥(gq, t) is the wave function and H(p, ¢g) in tt
equation is the Hamiltonian, which in its turn is a functic
of canonical variables. p is usually the diiferentiating operatc

B
P="T""5q
In such a case g is an ordinary c-number.
By means of its eigenvalues wave equation (3.1) gives th
quantized energy of the wave as well as the Hamiltonia

identical to it. To each state of quantized energy correspond
a solution of the Schrédinger equation

YV —=1n-expliont], (3.2

where 9n(q) is the n-th eigenfunction and wn is the frequenc
of the corresponding waves of matter. It is related to the valu
of quantized energy through the formula

En="Fiwn. | (3.3

As we can see, the frequency of the waves of matter i
determined through the eigenvalues of the Hamiltonian as we
as through the eigenvalues of the energy in case th
Hamiltonian and the energy are identical.

In the formalism of the quantum theory the co-ordinate an

aratrant Aanaratare n arnd A farm thae camrallad carnarnicral mnale
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they are canonmically dual to one another. The latter means
also that between these operators the basic relation of the
quantum theory is valid in the form of the corresponding
commutation rule

[p! Q]—_“'_ff-s

which permits, for instance, to regard the momentum operator
as a differentiating one

and g as an ordinary c-number.
For the Hamiltonian operator H time ¢ is canonically dual.
If we regard time ¢ as a c-number, then

i 0
H=“TW' (3.4)
On the other hand, in the problem of the motion of a particle
the Hamiltonian can be given as a function of the operators p
and ¢. Taking this fact into consideration and applying (3.4)
to the function ¥, the Schrédinger equation (3.1) will be
obtained.

Since the frequency of the waves of matter is given by the
corresponding solution of the Schrédinger equation, it is.
also determined by the Hamiltonian of the problem.

Complications arise when the Hamiltonian and the energy
are not identical. In this case too the Schrédinger equation
formed by means of the Hamiltonian gives the waves and their
frequency ». But when measuring electromagnetic waves, their
energy and not the Hamiltonian is measured. However, in
measuring the energy one does not obtain the frequency of
the waves x, which is determined by the Hamiltonian. It is.
to be supposed that there exists another wave equation related
to the energy and that the frequency of the waves determined
by this wave equation is the actual result of the measurements.
This, however, means also that there exists a canonically dual
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T for the operator E, just as the Hamiltonian has a canonically

dual ¢. In this case
fi o
E-——_—i-~—aT (3.9)

-and the wave equation formed by means of the energy operator
E would be

E-@z——--i—'—(?- (3.6)
‘where 7 is a certain c-number, a quantity measuring the time
~current.

The operator E conta'ns the time ¢ explicitly. Simultane-
ously with the wave equation (3.6) another time-measuring
quantity v has been introduced into the theory. Questions arise
‘as to the relations between the quantities r and ¢ and how one
should understand the existence of the two time measuring
"quantities in the theory.

First of all, it should be noted that as a result of the
~discussion presented above two pairs of canonically dual ope-
-rators

H,t; E 1t

are in the focus of attention. These operators do not commute
‘with each other and cannot therefore be given simultaneously
in diagonal form. While the time 7 is regarded in the theory
as a c-number, H, ¢ and E are not c-numbers any longer. Thus,
in wave equation (3.6), where ¢ appears in the operator E
explicitly, ¢ is not an ordinary c-number either but a quantity
-not commutable with several other operators. When the idea
is developed further, a number of conceptual complications
disappear which at first sight seem to arise due to the existance
-of two time current measuring quantities in the theory.

§ 4. Time Operator / and its Basic Properties

" Let us define the operator 7 as canonically dual to the
Hamiltonian H. Let the latter not contain ¢ explicitly. To

.find a dual 7 as a function of p and g for a concrete H, we
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shall first consider the problem from the point of view of
macrophysics, in order to re-interpret the relations afterwards
in terms of microphysics.

Let A(p, g) and B(p, q) be two functions of the canonical
variables p and g. They are canonically dual with respect to
one another if the Poisson brackets formed from them are
unity:
0A 0B 0A 0B
gp 9g 0q Jp
The quantum-theoretical equivalent of the Poisson brackets is
the A and B commutator. In the quantum theory formula (4.1)
is written

1. (4.1)

[A,B]=

[A,B]:—AB——BAzf-f—.

1f H and t are canonically dual, then according to (4.1)

OH ot OH dt
S 97— 9g op —1 (4.2)

should hold. Since

H=k (o (49 230 (pa+ap)), (43)

(4.2) gives the differential equation for the quantity £

ot ot
.t L A
(wp+-2m0q) 39 (wg+27ap) ap 1 (4.4)

The most suitable form for this problem is the following solution
of the equation:

____l_ (2n0+ix) g+wp | i
=i ln{ o' (0 (P 9%) +2n0 (pg+4p)) " }+ o ()

where 1, is the integration constant and

%2 == w? — Am*o.
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Time ¢ given by (4.5)depends on the canonical variables P
and g. On the other hand, when regarded as the solutions of
the Hamilton canonical equations, p and ¢ are functions of
the variable ¢ Therefore, substituting into (4.5) instead of
P and g their expressions as the solutions of canonical equations
we should obtain identity. The following will convince us of
this.
The Hamilton canonical equations are

0H - d '
5, =4 or —a—?-:wp—}—%mq,
P (4.6)
o . dp
ap =—p or —-——&t———wq—l—Qno—p,
where H has been taken from formula (4.3). It follows that
(2n04-ix) g+wp ; M explixt]
1 L —— ®y17. X
&P+ +2n0 (pg+qp)) = (MM TE X
(4.7)
(270 — ix) g+wp . M* .
. - r— == o exXpl—ixt],
(P g7+ 270 (gL 4p)) (iay - expL—tnt]

where M and M* are integration constants. When using (4.7),
it is easy to note that by a proper choice of the constants
equations (4.5) become identical. At the same time it is
:shown that according to (4.5) f(pg) is a time-measuring
quantity.

With a view to obtaining the quantum-theoretical operator 7
dfrom (4.5) one should regard p and ¢ in this expression as
the corresponding quantum-theoretical variables subjected to
the commutation rules (2.1). In this case, however, one should
define more exactly how to understand the symbols of the
functions occurring in (4.5), above all what the logarithm
of a rather complicated expression of the operators p and q
means. For this purpose let us consider given by (4.5) once
friore as a quantity -of macrophysics and have a try at finding
the power series that would determine the function t(pg). As
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we know, it is possible to re-interpret a power series in an
operator series. Let us denote

xq

=X, 4.8

" (0 (p*+4%) +270 (pg +4p) ) > (+8)
then

2ﬂ0q +‘a)p —_— l - Xz ]f,'z 4.9

@@ (P*+42) +2z0 (pgtqp)) s ¢ ) (+9)

and formula (4.5) may be represented as follows:

2man
x

t—«—toz——-;—ln {iX4+(1—Xx2)) = —f——i—arcsinX. (4.10)

Here m is a positive or negative integer and the function
arcsin X is defined as a power series

aresin X=X g LS _yey s CRRPRTY

Or

arcsin X:n_(x+—2%§-xa+2f:’5 Xop . ) (4.12)

Series (4.11) and (4.12) converge in the interva] —1<<X<.
With X = -1 both series give an identical valye for the
function arcsin X. For other values arcsin X is double-valued,
The presentation of (4.3) through formulae (4.8) and series

{4.11) and (4.12) makes it possible to define the operator ¢
as a certain function of the operators p and gq. Therefore, let
us note first that according to (4.8) the quantity X can also
be written as follows:

» .
=-_a?71§1—r/2—’ . (4.13)

while the expression of the Hamiltonian according to (4.3)
has been kept in mind. It is especially simple to calculate the
matrix X in the presentation where the Hamiltonian # is dia-
gonal. In this case the matrix H-% is also diagonal and
diagonal terms can be calculated easily. In view of this cir-
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——— e

cumstance, the calculation of the matrix X by means of formula
(4.13) is an easy task. If there is an ¢xpression for X, it is
also for X» where n is an integer. Now expansions in series
(4.11) and (4.12) define also arcsin X as a matrix function of
the matrix X.

According to the presented discussion the operator { is the
following: i

?——to-—-_--%—-m—l—% arcsin X, (4.14)

As it appears from this, the time operator z?consists of two
addends, the former being an ordinary c-number, the latter an
operator with the eigenvalues in the range of 0...2z. This
result has a clear quantum-theoretical interpretation, which
lies in the following.

The current of the time ¢ is reflected in the operator (4.14)
by the sequence of the integers m. If the sequence begins
with the number m =0, the time current can be reflected by

the numbers 0, 1, 2, 3. . This part of the operator ¢ which can
be given as a c-number, gives a discrete time current, the size
of a jump

being equal to a period of the quantum-theoretical system
considered. Consequently, the c-number part of the time operator
measures the time current by periods. The other part of the

A

operator ¢ in (4.14) is the matrix. It reflects the time current
during a wave period. From the point of view of the quantum
theory, it is clear that in 4 strict microphysical sense it is
impossible to give a state of a particle of matter, (e, g. the
state of a photon, its energy, etc.) during a shorter time-
interval than the corresponding wave period. This is in what
the structure of (4.14) is reflected, i. e. the time current
measured by the duration of the periods is a c-number, the
time current with a shorter duration than the period P is a
matrix.
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§ 5. Second Schrédinger Equation of Electromagnetic Waves

The electromagnetic wave energy is

=_é_w(pz+qz) -exp[—4ao(t —h) ). (5.1)

This formula follows from the Maxwell equations with an
additional cosmological term. Besides the Hamiltonian, energy
expression (5.1) is one of the most essential quantities
characterizing the radiation field. In the case of a radiation-
absorbing medium one should, besides the wave equation
formed by means of thé Hamiltonian, also take into account
the wave equation obtained through the energy operator. Let
us call the wave equation obtained by means of the Hamiltonian
the first, and that obtained by means of the energy operator
the second Schrodinger equation.

The necessity of the second Schrdédinger equation in the
theory was already motivated above and the corresponding
equation was given by (3.6). For its corncrete presentation
the energy expression (5.1) should be used where p, ¢ and

b

{ are the corresponding operators. Relying on formula (4.14)
we can write

exp[——fln’a(?_ to) ]:exp[ —4%0%—5 m] 'exp[ -—ig—g— arcsin X] =
. 8n%a ( . 9 ) 9
—exp[— » m] 1 —4no Py (5.2)

in which also formula (4.13) has been used. The operator
can now be expressed as follows:

S m] . (1 — 470 -——Iﬁ-——) , (5.3)
7 @'
whereas the terms of higher order of the series expansion
have been left out of consideration.

Let 7, which is canonically dual to the energy, be a c-number.
The second Schrodinger equation reads

0

fi
E(p: q) @(q! T)-:‘_T_'a?}q)(qs T),

1
E=—Fw(p*+4°) -exp[—
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or keeping in mind formula (5.3), it may read

1 0? g
| — 2 g2 _ — 7 _J.exnl_
2 a)( g dq? 4 )(l 7o w2 ' ) ehp[
i 0D

. Ot °’

8a2g

m ] . @(?4)

where p has been taken as follows

A0

— e s

i o0q °

The operator £ does not contain the time ¢ explicitly but
here occurs the term

exp [__ 8n2o m]
M

where the integers m measure the time current. To solve wave
equation (5.4) it is necessary to clarify the inter-relations be-
tween the quantities m and r.

Perhaps the problem will need a closer examination, but
already now it is possible to propose hypotheses that should
not contradict the inner logic of the theory. Namely, it is
possible to suppose that m and 7 as time current measuring
quantities increase in parallel. However, since m is an integer,
its increase proceeds discretely; 7, on the contrary, increases
continuously. It means that during the rise of ¢ within the
interval determined by the length of the period

27

P"_ )
X

m remains constant. Thus, the quantity m is the function of
the time variable ¢ which can be represented by a stepped
graph (see Fig. 1). With this in mind it is quite easy to find
solutions for (5.4) in the following way.

We substitute

D=0, (7) - gn(q) (55)



Redshift of the Spectral Lines of Cosmological Objects 97
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Fig. 1.

where @n is the solution of the equation

1 0? q (0)
—i‘w(—ﬁzaqz —{—qz)(l—tlawm) (pn:En On (56)

and E.° is the corresponding eigenvalue. The function of the
time 7 an(7) in (5.5), however, should satisfy the equation

d ] | 8n?
—a—’r—(lnan)=—-——_,:z—5f)-exp[— Zam]. (5.7}

On conditions (5.6) and (5.7) substitution (5.5) really serves
as the solution of wave equation (5.4).
It follows from differential equation (5.7) that

T

i 8nlg .
In anz——ﬁ—ng exp[ — m]dr. (5.8)

#
0

Calculating this integral, note that the quantity m as the
function of the time variable 7 is represented on the graph
(Fig. 1). Relying upon this graph, it is possible to write

; 2
Ina,=In Ca () — - Eo -exp[-— 85;" m] 7, (5.9)

7 Tly6apxaunu TAO
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whereas

i 2
InCy (m) :_%Eg 2£ { ——m-exp[ L 8n?o m] n

when (m— 1)%—<r<m7.

‘The geometrical sum occurring in (5.9) and (5.10) is easliy
calculable, and so we get:

exp[ 87 m] |
R — —
Sexp| - T k1) | = x

[ 8nto ]
exp| — —1

X

Having established in the form of (5.10) a(z) as the function
of the quantity 7, the solution of wave equation (5.4) according
to (5.5) can be represented in the following form

O =Ca(m) -exp| — B2, -exp[ —

It should be mentioned that according to (5.10)

(5.11)

C (m)C (m)=L.

The function ¢, (g) in solution (5.11) satisfies equation (5.6)
with the eigenvalue E,©.

Good results in solving equation (5.6) are obtained when
using the perturbation method if we take

_9
—Ano T (5.12)

as a perturbation term and if we use the equation

| _;_ ( aq ) $0 = EOp0 (5.13)
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to get the solution in the first approximation. Equat’on (5.13)
is the Schrédinger equation of a harmonic oscillator with
the eigenvalues

E‘T?’:-ﬁw(n—i*%‘), (5.14)

where nz=0 is an integer and eigenfunctions can be
expressed in a well-known way by means of the Hermite
orthogonal functions. It can also be shown that making the
solutions more exact by the perturbation method the next
approximation does not change the eigenvalues in (5.14) and
that the correction term of the eigenfunctions is proportional
to the quantity o, consequently being a very small quantity.
Taking this fact into account, one can proceed from (5.13)
instead of (5.6) in most cosmological problems.

Drawing conclusions we can state on the basis of the above
analysis that instead of wave equation (5.4) it is possible to
use with sufficient exactness the wave equation

1 - 0?2 2) ____h oo,
where
— 2
wzw-exp[ — 8‘10 m] =w-exp[—4no(t —1)]. (5.16)

In solving equation (5.15) the quantity m as well as the
quantity related to it

t*——f0='2£m
*
may be regarded as independent of the time variable r. Here
t—1o is the t'me that has elapsed since the excitation of the
corresponding harmonic oscillator into the observable quantum
state n.
Equation (5.15) is the wave equation of the harmonic

oscillator with the frequency . Being one of the basic formulae
of the traditional quantum theory, (5.15) shows that most of
the well-known formulae in the theory of electromagnetic

“'.lt
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radiation can also be transferred into the theory of electro-
magnetic radiation in a conducting medium after substitution
(5.16) is performed. This, however, is the well-known redshift
formula the quantum-theoretical motivation of which has been
given by the above discussion.

§ 6. On Change in the Photon Number and Other
Related Problems

The photon number operator 9 is time-independent and the
eigenvalues n of the operator are constants in time. Therefore,
the energy absorption effect of the vacuum does not affect
the photon number n which, once it has come into existence,
remains. The question, however, is important enough to justify
a closer analysis.

The process of the creation of photons might be described
as follows. The electromagnetic waves with the frequency o
are excited at the moment ¢ = t, n photons are created while
the necessary amount of energy

n-fiw (6.1)
is obtained from a physical system present which caused the
creation of the wave. After the excitation at t > ty the energy
is continuously transferred from the wave into the vacuumt.
However, since the photon number n is constant, the amount
of energy belonging to each photon decreases and, as was
shown above, it takes place at the expense of the decrease in
frequency.

The fact that the photon number n is constant in time may
also be derived from the other considerations proceeding from
the calculations of the energy balance. In the transitions

n—>n—1 (6.2)

the wave energy should also normally decrease and, namely,
by the amount of the energy of the disappearing photon. In case
the process takes place in the vacuum where there is no other
physical system present, this transition is forbidden because
there is no matter in any form present (except the electro-
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magnetic waves themselves) to receive the energy released
from the wave. This is where the constancy of the photon
number results from.

This general law of forbiddenness may still have some
exceptions. 1f on a certain specific condition involving
transition (6.2) no change in energy takes place, the process
may also proceed in the vacuum since the reason of
forbiddenness, based on the energy balance, is absent. Since
such a transition is not caused by a physical system different
from the waves, the transition may be called a spontaneous
one. A characteristic feature of spontaneous transitions is the
decrease of the photon number without any change in the wave
energy. The moment f==t, of the spontaneous transition must
then be considered as another moment of excitation when the
wave consisting of n photons is replaced by that consisting of
n — 1 photons.

A spontaneous transition is a discrete process and it can
take place only at discrete intervals of time. Let our task be
to obtain a formula for the calculation of this interval.

In the transition the quantum number n changes discretely
according to (6.2). Accordingly, the wave function of the
oscillator must also change discretely. However, a change in
the wave function is restricted by two conditions: the energy
calculated by means of wave functions must remain constant
at a jump, whereas the quantum number n must decrease by
unity.

The wave function of the oscillator can be represented
according to (5.11) in the form

D=C, -pn(q) -exp[——iw( n~:—_; ) exp[—4mo (t —to) ] -q:] ,  (6.3)

in which case the following substitutions have been made in
' 1\
E‘g’zﬁa)(n*i-—éw)

and

2 .
8x’ m=—_t—tp.
X
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These substitutions have already been used above, in which
case fp is the excitation moment of the oscillator.

Let the moment of the spontaneous transition be f=¢,.
During the short time interval A¢ prior to the spontaneous
transition, i.e. at the moment

t=1t — At

the wave function of the oscillator according to (6.3) is

(D=Cn--q3n(q)-exp[—io)(n—{——é—)exp[—ﬁlno(h—to—ﬁt)]-1:&].
(6.4)
After the lapse of the time interval A¢ since the jump, i.e.
at the moment
- t=1y - At
the wave function is

D=Cri-¢n(q) -exp[ —-—iw( n ——2L) -exp[—4moAt] -1'] . (6.9)

When writing this formula, it was taken into account that
in the spontaneous transition the quantum number n decreases
by unity and that the moment of the transition ¢ = ¢, is a new
moment of excitation of the oscillator. Therefore ¢, in (6.3)
denoting the initial moment of excitation must be replaced by
f) denoting the new moment of excitation, i. e.

to—*—fi.

The energy of the oscillator immediately before the transi-
tion can be calculated by means of the wave function (6.4)

t<t] f@* { @ dq=

:ﬁw‘( n—f——Ql—-) exp[—4xno (fo— t1— Af) ]. (6.6)

Likewise the calculable energy immediately following the
spontaneous transition is

E,_, =_ﬁa)(n-——é—-) -exp[—4moAt]. (6.7)
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Energy does not undergo any changes in the spontaneous
transition. Hence

E =F

f<<t; — Tty

il At — 0. From (6.6) and (6.7) we obtain the following:

1 2n 1
ti_to_él:m In on—1°

(6.8)

which is the formula we have been aiming at.

Formula (6.8) helped to interpret the multiplicity of the
redshift of quasars [2].

Formula (6.8) has been derived on the assumption that
spontaneous transitions really take place; it does not prove,
however, their occurrence. As far as the latter is concerned,
a respective motivation has been given in the author’s previous
work [2]. As the main motivation one should regard the
consideration following from the energy balance. The spon-
taneous transitions without any accompanying energy re-
distribution may take place with a certain probability different
from zero but presumably less than unity. This fact, however,
is typical of the rules of quantum physics.

Summary

The leading idea of this investigation is the hypothesis
according to which the vacuum possesses a number of physical
properties, including the ability to absorb the electromagnetic
radiation passing through it. In comparison with real matter,
however, the radiation absorption effect of the vacuum is
negligible. But light, coming to the observer from cosmological
objects, has been affected by the vacuum for millions of years.
Here the vacuum must have exercised an influence on radiation
which may manifest itself, for example, in the well-known
redshift of the spectral lines of cosmological objects. This idea
provides the basis for the creation of the theory of cosmological
quantum electrodynamics.
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According to the theory of cosmological quantum electro-
dynamics, the state of a monochromatic wave is determined
by two numerical quantities — the wave photon number n

and the photon frequency . The energy of the whole wave is
Ezﬁa( n+—21—-) ,

in which case this formula is formally entirely similar to that
of the quantum theory of electromagnetic radiation, which does
not take into account the physical properties of the vacuum.
In the traditional quantum theory of radiation the photon
number as well as frequency are constant. According to the
theory of cosmological electrodynamics, however, both these
quantities change in time. The formulae for the establishment
of these changes are given in the present paper.

One of the most characteristic features of this theory is
the change of a monochromatic wave in the vacuum. At the
same time, these changes are either continuous or discrete,
In a continuous transition the wave energy changes while the
photon number remains unchanged. In discrete transitions,
however, it is the photon number that decreases, whereas the
wave energy remains unchanged.

The continuous decrease of photon energy coupled with
a decrease in frequency gives the well-known redshift formula.
As is commonly known, the latter is already derived from
general cosmolog'cal considerations without making use of
the Maxwell equations or their quantization. On the contrary,
the discrete change of the photon number is a typical quantum
effect and it cannot be derived without applying the rules of
quantum physics. This fact should justify the attempt to suggest
a theory of cosmological quantum electrodynamics.

Due to the discrete changes in the photon number which
take place at discrete moments and which extinguish the red-
shift, one can expect to find multiplicity of the redshiit quantity
z of the spectral lines of cosmological objects. As we know,
this has been observed in various absorption lines, especially
in those which occur in the spectra of remote quasars. The:
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multiplicity of the redshift quantity is one of the most decisive
facts estimating the validity of the theory of cosmological
electrodynamics presented in this work.

The problem of the relations between the theory of cosmo-
logical quantum electrodynamics and the generally acknow-
fedged cosmological theories has been treated as a separate
question in the present paper. The cosmological theories have
been developed to perfection on the principles of the general
theory of relativity. We are of the opinion that these two
groups of theories are not antagonistic, excluding each other.
Quantum physics does not eliminate macrophysics and some-
thing of the kind could be expected after the theory of cosmo-
logical quantum electrodynamics developed in this paper has
justified itself.

I should like to thank Dr. A. Sapar for helpiul discussions

related to this study.
December 1971.
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