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A model for atmospheric
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In this paper we study a mathematical model for atmo-
spheric circulation. If the wind directions of the atmo-
sphere were averaged over large sections of the Earth’s
surface, a circulation pattern evolves – developed by the
heating of the sun and also due to the Earth’s rotation. To
describe this complex weather system more than 105 vari-
ables would be involved. We propose a low order model
based on a system proposed by Lorenz [4], which models a
modified Hadley circulation. (This model will be referred
to as the Lorenz-84 Model.) The model involves three
dependent variables : x representing the poleward temper-
ature gradient, y and z representing the cosine and sine
phases of a sequence of eddies which are large-scale and
superposed and t, the independent variable representing
time.
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Introduction

The Earth’s atmosphere is in constant circulation due to the
Earth’s atmosphere being heated by the Sun and the Earth’s ro-
tation. Mega scale circulatory events develop in the atmosphere
because of the uneven heating of the surface of the earth.A suc-
cession of heating of the air near the Earth’s surface, rising and
cool air coming down sets up a general circulation pattern: air
rises near the equator, moves north and south away from the
equator at higher altitudes, sinks down near the poles, and flows
back along the surface from both poles to the equator. This type
of flow is called Hadley circulation after George Hadley, who was
the first to describe the process [8]. We show a figure depicting
Hadley circulation:

To describe this complex weather system more than 105 vari-
ables would be involved. Computations based on these vari-
ables would then be extremely complex and costs of computa-
tions,immense. We examine a low order model which models
a modified Hadley circulation which is drawn from a paper by
Lorenz [4].

dx

dt
= −y2 − z2 − ax

dy

dt
= xy − bxz − y

dz

dt
= bxy + xz − z (1)

where,t,the independent variable represents time,x represents
the pole ward temperature gradient or the intensity of the west-
erly wind current,or in other words it stands for the strength
of a symmetric, globally averaged westerly wind current.y and
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Figure 1: Hadley Circulation.
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z represent the cosine and sine phases of a sequence of eddies
which are large-scale and super posed. The variables y and z are
the strengths of cosine and sine phases of a chain of superposed
waves transporting heat poleward. The terms in b represent
displacement of the waves due to interaction with the westerly
wind. The coefficient a, if less than 1, allows the westerly wind
current to damp less rapidly than the waves.

Other authors have worked on this model. For instance Broer
et.al in [1] study a particular case of periodic forcing of parame-
ters F and G where the terms in F and G are thermal forcings:
F represents the symmetric cross-latitude heating contrast and
G accounts for the asymmetric heating contrast between oceans
and continents. Lennaert van Veen in [5] analyzes a model which
describes midlatitude atmospheric flow on a synoptic scale, a
few thousand kilometers in a space and a week or so in time.
He studies a six dimensional model related to the Lorenz-84
model. The focus of this study is on the interaction of the jet
stream and the baroclinic waves and its representation in a low
order model. With the aid of discretisation in the vertical and
Galerkin truncation in the horizontal coordinates, they approx-
imate the equations by a finite number of ordinary differential
equations. J. G Friere et. al., in [2] examine phase diagrams de-
tailing the intransitivity observed in the climate scenarios sup-
ported by a prototype atmospheric general circulation model,
namely, the Lorenz-84 low-order model. These eddies transport
heat towards the pole. The terms xy and yz represent amplifi-
cations of the eddies through interaction with the westerlies. by
their interactions with x or the westerlies. This has been studied
by some authors. Numerical and analytical explorations can be
found in [6] and [10], a bifurcation analysis in [9]. We propose a
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slightly different model based on the Lorenz model and examine
its implications.

1 Analysis Of The System

As we mentioned in the introduction several authors have stud-
ied the Lorenz 84 Model and analyzed its attracting sets from
various numerical perspectives. Our intention is not to repeat
their analysis, but to understand a simple variation of the Lorenz
84 Model by analyzing what happens to the equations if we ne-
glect the effect of the terms aF and G that is the effect of sym-
metric and asymmetric thermal forcings. F and G are the values
to which X and Y would be driven if the westerlies current and
eddies were not coupled. In one case under study of the model
we propose, we neglect the terms F and G. We would like to
remark that this is equivalent to saying that the westerlies and
the eddies were not uncoupled. This is in our opinion not unre-
alistic.
Of course since the equations are highly nonlinear it is interest-
ing to see how the various attracting sets emerge for different
values of the parameters. We present a brief graphical analysis
of the effect of the change in the system as far as the attracting
sets are concerned with the change of a few parameters. The
Lorenz-84 Model is given by equations (2). As mentioned ear-
lier, the terms in F and G are thermal forcings: F is the sym-
metric cross-latitude heating contrast and G accounts for the
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asymmetric heating contrast between oceans and continents.

dx

dt
= −y2 − z2 − ax + aF

dy

dt
= xy − bxz − y + bG

dz

dt
= bxy + xz − z (2)

In our model we consider various cases. Primarily our interest
is in the first case where we do not take into consideration the
uncoupling of the westerlies with the atmospheric eddy currents.

We begin by determining the equilibrium points of the sys-
tem, Equation (1). The equilibrium point which is real is ob-
tained to be (0,0,0). Linearizing the system around this equilib-
rium we obtain the system

dx

dt
= −ax

dy

dt
= −y

dz

dt
= −z (3)

The system (3) can be easily solved and has the solution x =
c1e

−at , y = c2e
−t z = c3e

−t c1, c2, c3 being arbitrary constants.
The coefficient matrix of the linearized system at the equilibrium
point (0,0,0) is 


−a 0 0
0 −1 0
0 0 −1



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The Eigen values are seen to be (−a,−1,−1). This indicates
that the equilibrium is a stable equilibrium. That the equilib-
rium is stable as is also evident from the solution of the linearized
system.

2 Liapunov Function

We now apply Liapunov’s direct method to the problem on hand.
Let L(x, y, z) = x2 +y2 +z2 be a Liapunov function, L(0, 0, 0) =
0, L(x, y, z) > 0 for x > 0, y > 0, z > 0

L̇ = x(−y2 − z2 − ax) + y(xy − bxz − y) + z(bxy + xz − z)

= −ax2 − y2 − z2 < 0

To illustrate this better we include a figure (2) where one can
clearly see the direction field going toward the equilibrium point.

A numerical solution of the system for x ,y and z are obtained
and compared with the results obtained by plotting Lorenz’s 84-
model The figures follow:

It is evident from Fig. 3 that the temperature gradient x, is
steep initially and decreases when time t is nearer zero that is
the beginning of the cycle, which is the winter season. Then as t
increases or the months progress forward, the gradient increases
(positive) for some time and finally tapers off.
We next show the comparative graphs for the sine (z) and the co-
sine (y) phases of superposed eddies which transport heat pole-
ward with time t for our model and the Lorenz-84 Model. If we
compare the way y (or the cosine phases of superposed eddies
which transport heat poleward) changes with the months, in our
model y → 0 with time, whereas in Lorenz’s model y → G . In
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Figure 2: In this picture we show some lines showing the direction of the
force field

(a) x- The poleward temperature gra-
dient and time t.

(b) x- The poleward temperature gra-
dient and time t form the Lorenz-84
Model

Figure 3: Comparison of the two models
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Figure 4: y- The Cosine phase of superposed eddies and t (time)
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Figure 5: z- The Sine phase of superposed eddies and t (time)
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this case G has been chosen to be 0.8.(As chosen by Lorenz in
his Lorenz-84 Model)
When we examine the variation of z, in the original Lorenz
model the temperature decrease is oscillatory, our analysis on
the other hand throws up a smooth decrease. We next plot the
solution of our model for x yand z. The relation between the
terms x, y and z is apparent that is they tend to the equilib-
rium point with increase in time.The result of our analysis is
rather interesting. When the terms F and G are neglected, we
see that the poleward temperature gradient namely x is smooth
with the passage of the months (t), and not oscillatory as seen
in the Lorenz 84 Model. Our result maybe closer to real obser-
vations than an oscillating change. This point can be seen in the
following real-time temperature profile: [7]. As mentioned ear-
lier, we present a numerical simulation of the Lorenz 84 Model
for different values of the parameter b. The figures are simulated
for the values of F = 14.14, G = 3.19, t = 7.62, x0 = 6.47, y0 =
89.57, z0 = 21.77. with changing values of b. It can be observed
that with the change in the parameter b from 0.4 < b ≤ .1 to
0.1 < b ≤ 3.56, the attracting sets increase from 2 to 3.

It can be observed that with the change in the parameter b
from 0.4 < b ≤ .1 to 0.1 < b ≤ 3.56, the attracting sets again
change in number. We would like to point out that while rel-
atively wide portions of the F × G parameter plane have been
considered, before by a number of authors, virtually all compu-
tations so far were done only for Lorenz’s choice of a=0.25 and
b=4. The exception are the considerations of van Veen, [5] who
studies the case a=0.35 and b=1.33. We have done an analysis
for a wide range of values of b from .45 < b ≤ 6.01.

For the next case we consider a periodic perturbation of the

c©2012 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 19, No. 3, July 2012 274

Figure 6: In this picture we show the relation between x, y and z
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Figure 7: Latitudinal and Longitudinal variation of Tempera-
tures (NOAA-2011)
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(a) The Lorenz84 Model with 0.4 <
b ≤ .1

(b) The Lorenz84 Model with 0.1 <
b ≤ 3.56

Figure 8: Lorenz 84 Model for different values of b

parameters F and G with a multiplicative term, cos(rt) so the
system under consideration is

dx

dt
= −y2 − z2 − ax + aF cos(rt)

dy

dt
= xy − bxz − y + bG cos(rt)

dz

dt
= bxy + xz − z (4)

A numerical simulation of equation (4) is
In Figure (10) the values of the parameters are as follows:

b=18.57, G=2.97, a= 20.33, r=5.,1, t=17.95. Two attractors
are clearly visible for two different values of F .
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(a) The Lorenz84 Model with 3.56 <
b ≤ 5.1

(b) The Lorenz84 Model with 5.1 <
b ≤ 5.8

Figure 9: Lorenz 84 Model for different values of b

We next Simulate a model of Lorenz 84 with a different kind
of Periodic Perturbation, that is (1 + e cos(rt)), which we show
for the values for t=8.27, b=4,f=7, G=1.7545, e= .01, a =.25,
r= .086.
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(a) The Lorenz84 Model with a peri-
odic perturbation with F = 4.95

(b) The Lorenz84 Model with a peri-
odic perturbation with F = 14.4

Figure 10: The perturbed Lorenz 84 Model for different values
of F
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Figure 11: A Phase-portrait of a periodically perturbed Lorenz-
84 system , Pertubative term= (1 + e cos(rt))
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3 Conclusion

We started with the Lorenz 84 model, we then modified the
model by neglecting the effect of the decoupling of the wester-
lies and the atmospheric eddies. In this new formulation we find
that the poleward temperature gradient first increases with time
and then steadily and smoothly decreases till it attains asymp-
totically the equilibrium value. This conclusion is borne out
by a dynamical system analysis, including the Liapunov func-
tion. Whereas in the original Lorenz model the temperature
decrease is oscillatory contrary to observations, our analysis on
the other hand throws up a smooth decrease consistent with
observations. We also carried out some numerical simulations
for the Lorenz 84 Model for a range of values of the parameters
including two different periodic perturbative coefficients. The
results show extremely chaotic behaviour, with the presence of
multiple attractors which change in number for a small change
in the parameters.
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