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In quantum theory it is generally assumed that there exists a 
special state called the vacuum state and that this state is a 
lower bound to the energy.  However it has recently been 
demonstrated that this is not necessarily the case for some 
situations [5].  In order clarify the situation we will consider a 
“very simple” field theory in the Heisenberg picture consisting 
of a quantized fermion field with zero mass particles in 1-1D 
space-time interacting with a classical electrical potential.  It 
will be shown that for this example there is no lower bound to 
the energy. 
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1. Introduction. 
In quantum theory it is generally assumed that there exists a special 
state called the vacuum state and that this state is a lower bound to the 
energy.  That is, no state can have a value of energy that this less than 
that of the vacuum state.   However it has been shown by the author 
that this is not necessarily the case for some situations.  For example it 
can be easily shown that in Dirac’s hole theory there exist states with 
less energy than that of the vacuum state [1][2][3][4].   It has also 
been recently demonstrated that for quantum field theory in the 
Heisenberg representation there are states with less energy than the 
vacuum [5].  

In order to clarify the situation we examine a “very simple” field 
theory in the Heisenberg picture.  The field theory will consist of a 
quantized fermion field consisting of non-interacting fermions with 
zero mass.  This fermion field will interact with a classical potential in 
1-1D space-time.  The advantage of this formulation is that it is 
possible to obtain exact solutions to the equations of motion.  It will 
be shown that for this field theory there is no lower bound to the 
energy.   

In the Heisenberg picture the state vectors Ω  are constant in time 
and the time dependence of the quantum state is carried by the field 
operators ( )ˆ ,z tψ  where z  is used to represent the space dimension.  
This is in contrast to the Schrödinger picture where the field operators 
are constant in time and the time dependence goes with the state 
vectors.  Both pictures are presumed to be equivalent, however this 
assumption has been challenged by P.A.M. Dirac [6][7].  Some 
differences between the two pictures are also discussed  [8].   In the 
rest of this paper we will focus solely on the Heisenberg picture. 
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2.  The Heisenberg picture. 
As was stated in the Introduction we will assume that the electrons 
have zero mass and are non-interacting, i.e., they only interact with an 
external electric potential.  In addition we will work in 1-1 
dimensional space-time where the space dimension is taken along the 
z-axis and use natural units so that 1c= = . This allows us to 
simplify the discussion and avoid unnecessary mathematical details.  
In this formulation an exact solution to the equations of motion is 
readily achieved as will be shown in the following discussion. 

In the Heisenberg picture the field operators evolve in time 
according to the Dirac equation (see Chapt. 9 of [9] or Section 8 of 
[10] or Ref. [5]).  For 1-1D space time the Dirac equation can be 
written as,  

 ( ) ( )
ˆ ,

ˆ ,
z t

i H z t
t

ψ
ψ

∂
=

∂
 (2.1) 

where the Dirac Hamiltonian is given by, 
 ( )0 ,H H qV z t= +  (2.2) 

where 0H  is the Hamiltonian in the absence of interactions, ( ),V z t  
is an external electrical potential, and q is the electric charge.  For 
zero mass electrons the free field Hamiltonian is given as, 

 0 3H i
z

σ ∂
= −

∂
 (2.3) 

where 3σ  is the Pauli matrix with 3

1 0
0 1

σ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
. 

If the electrical potential is zero then the energy of a normalized 
state vector Ω  is given by, 
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 ( ) ( ) ( )†
0 0ˆ ˆ, , Rt z t H z t dzξ ψ ψ ε= Ω Ω −∫  (2.4) 

where Rε  is a renormalization constant which is normally defined so 
that the energy of the vacuum state is zero. Since this is the energy 
when the electric potential is zero we will sometimes refer to it as the 
free field energy.  The question we want to address is whether or not 
there is a lower bound to the free field energy.  The way we will 
determine this is as follows.  At the initial time 0t =  the electric 
potential is zero and the system is assumed to be in the initial 
unperturbed state.  In this initial unperturbed state the field operator is 
defined by ( ) ( )0ˆ ˆ,0z zψ ψ= , where ( )0ˆ zψ  is discussed in the 

Appendix, and the state vector is given by Ω .  The initial energy is 

( )0 0ξ .  Next apply an electric potential and then remove it at some 
later time ft  so that, 

 0 for 0V t= ≤ ;  0 for 0 fV t t≠ < < ;  0 for fV t t= ≥  (2.5)

The field operator ( )ˆ ,z tψ  will evolve in time according to Eq. 

(2.1) with the initial condition ( ) ( )0ˆ ˆ,0z zψ ψ= .  This will, in 
general, result in a change in the energy.  At ft , where the applied 

potential has been set back to zero, the energy is given by ( )0 ftξ .  
Therefore the change in energy from 0t = , to the final time, ft  is 
given by, 
 ( ) ( ) ( )0 0 00 0f ft tξ ξ ξΔ → = −  (2.6) 
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It will be shown that ( )0 0 ftξΔ →  can be a negative number with 
an arbitrarily large magnitude.  Therefore, there is no lower bound to 

( )0 ftξ . 

In order to calculate ( )0 0 ftξΔ →  take the time derivative of  
(2.4) to obtain, 

 ( )
( ) ( )

( ) ( )

†

0
0

†
0

ˆ , ˆ ,

ˆ ,
ˆ ,

z t
H z td t t dz

dt z t
z t H

t

ψ
ψξ
ψ

ψ

⎛ ⎞∂
⎜ ⎟

∂⎜ ⎟= Ω Ω
⎜ ⎟∂
+⎜ ⎟

∂⎝ ⎠

∫  (2.7) 

Use (2.1) along with (2.2) and (2.3) to obtain, 

( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )( )

†

†
3

0

2
†

2

†
3

ˆ ˆ, ,

ˆ ,ˆ, ,

ˆ ,
ˆ ,

ˆ ˆ, , ,

z t z t
i

z z
z t

qV z t z td t z dz
dt z t

i z t
z

q z t V z t z t
z

ψ ψ

ψ
ψ σξ

ψ
ψ

ψ σ ψ

⎛ ⎞⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟

∂ ∂⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟∂
+⎜ ⎟⎜ ⎟∂⎝ ⎠⎜ ⎟= Ω Ω

⎜ ⎟⎛ ⎞∂
⎜ ⎟⎜ ⎟

∂⎜ ⎟⎜ ⎟+
⎜ ⎟∂⎜ ⎟

−⎜ ⎟⎜ ⎟
∂⎝ ⎠⎝ ⎠

∫  (2.8) 

Integrate by parts to obtain, 

 
( ) ( ) ( ) ( )( )0 †

3ˆ ˆ, , ,
d t

q V z t z t z t dz
dt z
ξ

ψ σ ψ∂⎛ ⎞= Ω Ω⎜ ⎟∂⎝ ⎠∫  (2.9) 

Now, in order to continue this analysis, we need to solve the Dirac 
equation (2.1).  The solution of (2.1) can be easily shown to be, 
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 ( ) ( ) ( )0ˆ ˆ, , ,z t W z t z tψ ψ=  (2.10)

where ( )0ˆ ,z tψ  is the solution to the free field equation, 

 ( ) ( )0
0 0

ˆ ,
ˆ ,

z t
i H z t

t
ψ

ψ
∂

=
∂

 (2.11)

and can formally be written as, 
 ( ) ( )0

0 0ˆ ˆ, iH tz t e zψ ψ−=  (2.12) 

The quantity ( ),W z t  is given by, 

 ( )
1

2

0
,

0

ic

ic

e
W z t

e

−

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (2.13) 

where ( )1 ,c z t  and ( )2 ,c z t  satisfy the following differential 
equations, 

 1 1c c qV
t z

∂ ∂
+ =

∂ ∂
 (2.14) 

and, 

 2 2c c qV
t z

∂ ∂
− =

∂ ∂
 (2.15) 

Use (2.10) in (2.9) to obtain, 
 

( ) ( ) ( ) ( ) ( ) ( )( )† †0
0 3 0ˆ ˆ, , , , ,

d t
q V z t z t W z t W z t z t dz

dt z
ξ

ψ σ ψ
∂

= Ω Ω
∂

⎛ ⎞
⎜ ⎟
⎝ ⎠∫

  (2.16) 
Use ( ) ( )†

3 3, ,W z t W z tσ σ=  in the above to obtain, 
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 ( ) ( ) ( )0 0 ,
,

d t J z t
V z t dz

dt z
ξ ∂⎛ ⎞

= ⎜ ⎟∂⎝ ⎠
∫  (2.17) 

where, 
 ( ) ( ) ( )( )†

0 0 3 0ˆ ˆ, , ,J z t q z t z tψ σ ψ= Ω Ω  (2.18) 

Integrate this from 0t =  to ft  to obtain, 

 ( ) ( ) ( )0
0

0

,
0 ,

ft

f

J z t
t dt V z t dz

z
ξ

∂
Δ → =

∂∫ ∫  (2.19) 

Therefore at time ft  the free field energy is given by, 

 ( ) ( ) ( )0 0 00 0f ft tξ ξ ξ= Δ → +  (2.20) 

Note that in (2.19) the quantity ( )0 ,J z t z∂ ∂  is independent of 

( ),V z t .  This is evident from (2.18) and (2.12).  Assume for the 

moment that ( )0 ,J z t z∂ ∂  is non-zero.  If this is the case then it is 

easy to show that we can always find a ( ),V z t  which makes 

( )0 0 ftξΔ →  a negative number with an arbitrarily large magnitude.  
For example let, 

 ( ) ( )0 ,
,  for 0 f

J z t
V z t f t t

z
∂

= − < <
∂

 (2.21) 

where f  is a constant.  Use this in (2.19) to obtain, 

 ( ) ( ) 2
0

0
0

,
0

ft

f

J z t
t f dt dz

z
ξ

∂
Δ → = −

∂∫ ∫  (2.22) 
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Now as f →+∞  it is evident that ( )0 0 ftξΔ → → −∞ .  This 
means that an arbitrarily large amount of energy has been extracted 
from the quantum state due to its interaction with the electric potential 
and that there is no lower bound to the final energy ( )0 ftξ . 

3. Discussion. 
This result may seem somewhat surprising because it contradicts the 
widely held assumption that there is a lower bound to the energy in 
quantum field theory.  Therefore is worth carefully reviewing the 
assumptions that lead to these results.  The first and main assumption 
is that the field operators obey the Dirac equation.  Other than this we 
apply the normal rules of algebra and calculus to obtain (2.19).  Note 
that we don’t even use the commutation algebra so issues involving 
anomalous commutators are not a factor in these results. 

 Now to obtain the final result we assume that the quantum 
state has been set up so that ( )0 ,J z t z∂ ∂  is non-zero.  Now what is 

( )0 ,J z t ?  ( )0 ,J z t  is the free field current expectation value of the 

normalized state vector Ω .  That is, it is the current of the system in 
the absence of an electric potential.  This is why it is independent of 
( ),V z t .  Basically then we are assuming that a state vector Ω  

exists where ( )0 ,J z t z∂ ∂  is non-zero.  Now how do we know that 
this is the case?   It can be easily shown that when the field operator is 
expanded in the usual manner in terms of creation and annihilation 
operators that there are states that satisfy this condition.  This is 
shown in the Appendix. 

 Therefore we have the following conclusion regarding our 
“very simple” field theory - if the field operator obeys the Dirac 
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equation (2.1) and a state exists for which ( )0 ,J z t z∂ ∂  is non-zero 
then there is no lower bound to the free field energy.  This result is 
consistent with references [1-4] which show that there exist states 
with less energy than the vacuum in Dirac’s hole theory and Ref. [5] 
in which it was shown that there exist states with less energy than the 
vacuum for quantum field theory in the Heisenberg picture.  
Appendix 

In the main body of this article we have not expressed the field 
operators in terms of creation and destruction operators because this 
was not necessary to achieve the main results.  We will show that 
when this is done it is easy to shown that states exist where 

( )0 ,J z t z∂ ∂  is non-zero.  Recall that the field operator ( )0ˆ ,z tψ  
must satisfy Eq. (2.11).  In addition, it must satisfy the usual equal 
time anti-commutation relationship, 
 ( ) ( ){ } ( )†

0, 0,ˆ ˆ, , ,z t z t z zα β αβψ ψ δ δ′ ′= −  (A.1) 

Based on this we can write the field operator as, 

 
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

0 0†
0 1, 1,

0 † 0 †† †
0 1, 1,

ˆ ˆˆ , , ,

ˆ ˆˆ , , ,

p p p p
p

p p p p
r

z t b z t d z t

z t b z t d z t

ψ ϕ ϕ

ψ ϕ ϕ

−

−

= +

= +

∑

∑
 (A.2) 

where the ˆ
pb ( †ˆ

pb ) are the destruction(creation) operators for an 

electron associated with the state ( ) ( )0
1, ,p z tϕ  and the ˆ

pd ( †ˆ
pd )  are the 

destruction(creation) operators for a positron associated with the 
state ( ) ( )0

1, ,p z tϕ− .  They satisfy the anticommutator relationships, 

 { }†ˆ ˆ,p q pqd d δ= ; { }†ˆ ˆ,p q pqb b δ=  (A.3) 
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where all other anti-commutators are zero.  The vacuum state 0  is 
defined by, 

 ˆ ˆ0 0 0p pd b= =  and † †ˆ ˆ0 0 0p pd b= =  for all p  (A.4) 

Let ( ) ( )0
, p zλϕ  be the eigenfunctions of the free field Hamiltonian 

with energy eigenvalue ( )0
, pλε .  They satisfy the relationship, 

 ( ) ( ) ( ) ( ) ( )0 0 0
0 , , ,p p pH z zλ λ λϕ ε ϕ=  (A.5) 

where, 

 ( ) ( )0
,

1
1

2 1

ipz
p

p
p

z e
pL

p

λ

λ

ϕ
λ

⎛ ⎞+⎜ ⎟
⎜ ⎟=
⎜ ⎟
−⎜ ⎟

⎝ ⎠

;   ( )0
, p pλε λ=  (A.6)

and where 1λ = ±  is the sign of the energy, p  is the momentum, 
and L  is the 1 dimensional integration volume.  We assume periodic 
boundary conditions so that the momentum 2p r Lπ=  where r  is 
an integer.  According to the above definitions the quantities ( ) ( )0

1, p zϕ−  

are negative energy states with energy ( )0
1, p pε− = −  and the quantities 

( ) ( )0
1, p zϕ+  are positive energy states with energy ( )0

1, p pε+ = .   

The ( ) ( )0
, p zλϕ  form an orthonormal basis set and satisfy, 

 ( ) ( ) ( ) ( )0 † 0
, ,p p ppz z dzλ λ λλϕ ϕ δ δ′ ′ ′ ′=∫  (A.7) 

where integration from 2L−  to 2L+  is implied.  If the electric 
potential is zero then the ( ) ( )0

, p zλϕ  evolve in time according to, 
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 ( ) ( ) ( ) ( ) ( ) ( )00 0 0
, , ,, i p tiH t
p p pz t e z e zλ

λ λ λϕ ϕ ϕ−−= =  (A.8) 

Now consider the state vector, 

 ( )† †
,1 ,1

1 ˆ ˆ 0
2 p qb bΩ = +  (A.9) 

where both p  and q  are positive numbers.  Referring to the 
definitions in Section II we can show that the current expectation 
value of this state is, 

 ( ) ( )( )( )( )0
1, 1 cos

2
J z t p q z t

L
= + − −  (A.10) 

It is obvious, then, that ( )0 ,J z t z∂ ∂  is non-zero.    
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