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In quantum theory it is generally assumed that there exists a
special state called the vacuum state and that this state is a
lower bound to the energy. However it has recently been
demonstrated that this is not necessarily the case for some
situations [5]. In order clarify the situation we will consider a
“very smple” field theory in the Heisenberg picture consisting
of a quantized fermion field with zero mass particles in 1-1D
space-time interacting with a classical electrical potential. It
will be shown that for this example there is no lower bound to
the energy.
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1. Introduction.

In quantum theory it is generally assumed that there exists a special
date called the vacuum state and that this state is alower bound to the
energy. That is, no sate can have a value of energy that this less than
that of the vacuum state. However it has been shown by the author
that thisis not necessarily the case for some situations. For example it
can be easily shown that in Dirac’s hole theory there exist states with
less energy than that of the vacuum ate [1][2][3][4]. It has also
been recently demongrated that for quantum field theory in the
Heisenberg representation there are states with less energy than the
vacuum [5].

In order to clarify the situation we examine a “very smple” field
theory in the Heisenberg picture. The field theory will consist of a
quantized fermion field consisting of non-interacting fermions with
zero mass. Thisfermion field will interact with a classical potential in
1-1D gpacetime. The advantage of this formulation is that it is
possible to obtain exact solutions to the equations of motion. 1t will
be shown that for this field theory there is no lower bound to the
energy.

In the Heisenberg picture the state vectors | Q) are constant intime
and the time dependence of the quantum gtéate is carried by the field
operators y(zt) where z is used to represent the space dimension.

Thisisin contrast to the Schrodinger picture where the field operators
are congtant in time and the time dependence goes with the date
vectors. Both pictures are presumed to be equivalent, however this
assumption has been challenged by P.A.M. Dirac [6][7]. Some
differences between the two pictures are also discussed [8]. Inthe
rest of this paper we will focus solely on the Heisenberg picture.
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2. The Heisenberg picture.

As was dated in the Introduction we will assume that the electrons
have zero mass and are non-interacting, i.e., they only interact with an
external eectric potential.  In addition we will work in 1-1
dimensional space-time where the space dimension is taken along the
z-axis and use natural units 0 that 7=c=1. This allows us to
smplify the discussion and avoid unnecessary mathematical details.
In this formulation an exact solution to the equations of motion is
readily achieved aswill be shown in the following discussion.

In the Heisenberg picture the field operators evolve in time
according to the Dirac equation (see Chapt. 9 of [9] or Section 8 of
[10] or Ref. [5]). For 1-1D space time the Dirac equation can be
written as,

2Y G2 21)
ot
where the Dirac Hamiltonian is given by,
H=H,+qV(zt) (2.2

where H, is the Hamiltonian in the absence of interactions, V (z,t)

is an external electrical potential, and q is the electric charge. For
zero mass electronsthe free field Hamiltonian is given as,

.0
H, =-ioc,— 2.3
0 O3 o7 (23

-1)
If the electrical potential is zero then the energy of a normalized
state vector |Q) isgiven by,

1 0
whereo, isthe Pauli matrix with o, :(0 j
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=(Q|[y" (zt)Hy (2.t)dz|Q) ¢ (24)

where &, is arenormalization constant which is normally defined so

that the energy of the vacuum gate is zero. Since this is the energy
when the electric potential is zero we will sometimes refer to it asthe
free field energy. The question we want to address is whether or not
there is a lower bound to the free field energy. The way we will
determine this is as follows. At the initia time t =0 the €electric
potential is zero and the system is assumed to be in the initial
unperturbed state. In thisinitial unperturbed sate the field operator is

defined by v (z0)=y,(z), where y,(z) is discussed in the
Appendix, and the state vector is given by |Q). Theinitial energy is
&(0). Next apply an electric potential and then remove it a some
later time t, so that,

V=0fort<0; V+0forO<t<t,; V=0fort>t, (25

The field operatory (z,t) will evolve in time according to Eq.
(2.1) with the initial condition y(z,0)=y,(z). This will, in
general, result in a change in the energy. At t,, where the applied
potential has been set back to zero, the energy is given by &(t, ).
Therefore the change in energy from t =0, to the final time, t, is
given by,

A& (0t ) =4 (t, )= (0) (2.6)
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It will be shownthat A&, (O -t ) can be a negative number with
an arbitrarily large magnitude. Therefore, there is no lower bound to
&(t)-
In order to calculate A, (0 —t, ) take the time derivative of
(2.4) to obtain,

d§° QU A ey e
oy (z.t)
+y' (z,t)H, o
Use (2.1) along with (2.2) and (2.3) to obtain,
iatﬁT(z,t)azﬁ(z,t)
0z 0z
- oy (z,
dé v (2t) (2t)o, '”8(2“)
o :Q” (21 dz|Q) (28)
at o’y (z,t
|V (2t)—
-7 (24) 7, (V (24)7(21)
Integrate by partsto obtain,
d -
éo _qj( (z,t)asl//(z,t))|Q>jdz (29)

Now, in order to continue this analyss, we need to solve the Dirac
equation (2.1). The solution of (2.1) can be easily shownto be,
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v (z,t)=W(zt)y,(zt) (2.10)
where 7, (z,t) isthe solution to the free field equation,
Oy, (z,t -
|% = Hyo (2.1) (2.12)
and can formally be written as,
vo(zt) ="y (2) (212
The quantity W (zt) isgiven by,
e* 0
W(zt)= _ 2.13
(zt) [ 0 e.%j (213)

where ¢ (zt) and c,(zt) stisfy the following differential
equations,

acl o _
214
ot 82 =av 214
and,
oc, oc,
—=——==qV 2.15
ot oz a @19
Use(2.10) in(2.9) to obtain,
_qj( Q| 1//0 ()W (z,t) oW (1)1, (2t )|Q>jdz
(2.16)

UseW'(zt)oW(zt)=0. intheaboveto obtain,
(zt)oW(zt)=0,

© 2009 C. Roy Keys Inc. — http://redshift.vif.com



Apeiron, Vol. 16, No. 2, April 2009

dg;—t(t) = j[V(Z,t)—aJoézz’t)jdz

3o(zt)=9(Q|(v5 (z.t) o, (2.1))| Q)
Integratethisfrom t =0 to t, to obtain,

where,

PANEAY
0z

dz

A§0(0—>tf)=tjfdtjv(z,t)

Thereforeat time t, thefreefield energy is given by,
&(t ) =480, )+&(0)

197

(2.17)

(2.18)

(2.19)

(2.20)

Note that in (2.19) the quantity 8J,(zt)/dz is independent of
V(z,t). This is evident from (2.18) and (2.12). Assume for the
moment that J,(zt)/0z is non-zero. If this is the case then it is
easy to show that we can always find a V(z,t) which makes

A&, (O — 1, ) a negative number with an arbitrarily large magnitude.

For example let,
V(z,t):—f% for O<t<t,

where f isacongant. Usethisin (2. 19) to obtain,

A& (0 t) _—fjdtj
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Now as f —+oo it is evident that AZ,(0—t,)—>-w. This

means that an arbitrarily large amount of energy has been extracted
from the quantum state due to its interaction with the electric potential

and that there is no lower bound to the final energy &,(t, ).

3. Discussion.

This result may seem somewhat surprising because it contradicts the
widely held assumption that there is a lower bound to the energy in
quantum field theory. Therefore is worth carefully reviewing the
assumptions that lead to these results. The first and main assumption
is that the field operators obey the Dirac equation. Other than thiswe
apply the normal rules of algebra and calculus to obtain (2.19). Note
that we don't even use the commutation algebra so issues involving
anomalous commutators are not afactor in these results.

Now to obtain the final result we assume that the quantum

state has been set up <o that 6J,(z,t)/dz is non-zero. Now what is
Jo(zt)? Jy(zt) isthe free field current expectation value of the

normalized state vector | Q). That is, it is the current of the system in
the absence of an electric potential. This is why it is independent of
V(zt). Basicaly then we are assuming that a state vector |Q)

exists where 8J,(zt)/0z is non-zero. Now how do we know that

thisisthe case? It can be easily shown that when the field operator is
expanded in the usual manner in terms of creation and annihilation
operators that there are states that satisfy this condition. This is
shown in the Appendix.

Therefore we have the following conclusion regarding our
“very smple’ field theory - if the field operator obeys the Dirac
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equation (2.1) and a state exists for which 6J,(zt)/dz is non-zero

then there is no lower bound to the free field energy. This result is
consigent with references [1-4] which show that there exist states
with less energy than the vacuum in Dirac’s hole theory and Ref. [5]
in which it was shown that there exist states with less energy than the
vacuum for quantum field theory in the Heisenberg picture.

Appendix

In the main body of this article we have not expressed the field
operators in terms of creation and destruction operators because this
was not necessary to achieve the main results. We will show that
when this is done it is easy to shown that dates exis where

0J,(z,t)/6z is non-zero. Recall that the field operator v, (zt)

must satisfy Eq. (2.11). In addition, it must satisfy the usual equal
time anti-commutation relationship,

{ﬁoya(z,t),t/}gﬁ(z’,t)}:5aﬁ5(z—z’) (A1)
Based on thiswe can write the field operator as,

Vo (28) =X (Bl (2) +dleD, (2.1))
vy (zt)= Z(bT("lp (zt)+d05 (2, t))

where the Bp (6;) are the dedtruction(creation) operators for an

electron associated with the state(pl(yog (zt) and the ap(a;) are the
destruction(creation) operators for a positron associated with the
satep'? (z,t). They satisfy the anticommutator relationships,

{d,,dj} =5, {b,,0)} =5, (A3)

p’™q

(A2)
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where all other anti-commutators are zero. The vacuum state |0) is
defined by,

d,|0)=b,|0)=0 and (0|d =(0|b} =0 foral p  (A.4)
Let ¢°) () bethe egenfunctlons of the free field Hamiltonian
with energy eigenvalue 5@, , - They satisfy the relationship,

Hopl')(2) = &30 (2) (A5)
where,
1+pr
© (o 1 Pz o0 _ 5 A6
%,p(z) 2\/1 1_@ € &= |p| (A.6)
P

and where 1 =+1 isthe sign of the energy, p isthe momentum,
and L isthe 1 dimensional integration volume. We assume periodic
boundary conditions so that the momentum p=2zr/L where r is

aninteger. According to the above definitions the quantities gof?p (2)
are negative energy states with energy &9 = | p| and the quantities
¢\ (z) aepositive energy stateswith energy &7 =|p|.

The ¢!°) (z) forman orthonormal basis set and sdtisfy,

[e (2) 97y (2)dz=05,,5,, (A7)
where integration from —L/2 to +L/2 is implied. If the electric
potential is zero thenthe ¢!”) () evolve in time according to,
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oy (2t) ="l (2) =Mo", (2) (A-8)
Now consider the state vector,
1/~ ~
Q) =ﬁ(b;,1+b;,1)|o> (A.9)

where both p and g ae postive numbers. Referring to the

definitions in Section I we can show that the current expectation
value of thisstateis,

3,(2t) :2—1L(1+cos(( p—a)(z-t)) (A.10)

It is obvious, then, that 6J,(z,t)/oz isnon-zero.

© 2009 C. Roy Keys Inc. — http://redshift.vif.com



Apeiron, Vol. 16, No. 2, April 2009 202

References

(1
(2
(3]
[4]

D. Solomon. “Some differences between Dirac’ shadle theory and quantum
field theory,” Can. J. Phys, 83, 257, (2005). arXiv:quant-ph/0506271.

D. Solomon. “Some new results concerning the vacuum in Dirac hole theory”.
Physc. Scr. 74 (2006) 117-122. arXiv:quant-ph/0607037.

D. Solomon. “Quantum states with |ess energy than the vacuum in Dirac hole
theory”. arXiv:quant-ph/0702271.

D. Solomon “Dirac’ s hole theory and the Pauli principle: clearing up the
confusion”. aiXiv:0801.4140.

D. Solomon, “Some new results concerning the QFT vacuum in the
Helsenberg picture,” Aperion, 15, No. 2, April 2008 (567).

P.A.M. Dirac, “Quantum mechanics without the deadwood,” Phys. Rev. 119
(1965), B684.

P.A.M. Dirac, “Foundations of quantum mechanics” Nature, No. 4941 (July
11, 1964), 115.

D. Solomon “The Helsenberg versus Schradinger picture and the problem of
gaugeinvariance’. aiXiv:0706.3867.

W. Greiner, B. Muller, and J. Rafd ski. Quantum electrodynamics of strong
fields. Springer-Vdag, Berlin, 1985.

W. Pauli. Pauli Lectureson Physics Vol 6 Sdected Topicsin Fidd
Quantization, MIT Press, Cambridge, Massachusetts, 1973.

© 2009 C. Roy Keys Inc. — http://redshift.vif.com



