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On some consequences of the
Snyder–Sidharth deformation
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The hypothesis on a minimal scale existence in the Uni-
verse leads to noncommutative geometry of Spacetime and
thence to a modification of the Special Relativity con-
straint. Sidharth has deduced that this is equivalent to
the Lorentz symmetry violation. This latter considera-
tion was also used by Glashow, Coleman and other schol-
ars though based on purely phenomenological models that
have been suggested by the observation of Ultra High En-
ergy Cosmic Rays and Gamma Bursts. On the other hand
a parallel development has been the proposal of a small
but nonzero photon mass mγ > 0 by some authors in-
cluding Sidharth, such a mass being within experimentally
allowable limits. This too leads to a small violation of the
Lorentz symmetry observable in principle in very high en-
ergy gamma rays, as in fact is claimed. In this paper we
study the Snyder–Sidharth Hamiltonian and briefly com-
ment the Dirac–Sidharth Hamiltonian, that is a possible
explanation for observable violation of the Lorentz sym-
metry.

Keywords: Noncommutative geometry of Spacetime,
Lorentz symmetry violation, Nonzero photon mass, Con-
straints resolution, scale-modified Compton effect, Ultra
High Energy astrophysics
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Introduction

In Special Relativity, the Einstein Hamiltonian constraint holds1

E2 = m2 + p2, (1)

and is in fact a minimal quadratic form in the momentum p of a relativistic
particle. For this case the Lorentz symmetry is validate. However, recent
observations of Ultra High Energy Cosmic Rays and rays from Gamma Bursts
seem to suggest a small violation of the Lorentz symmetry [1]. Also a number
of scholars like Glashow, Coleman, and others have considered schemes which
depart from the Einstein theory (1). It must be stressed here that these all
schemes are purely ad hoc.

From a theoretical physics point of view, the problem seems to have a
source in the fact that the equation (1) is not the only possible Lorentz
invariant quadratic form in momentum p. As the example let us consider the
natural possibility of deformation of the energetic constraint (1) by simple
adding linear term in p

E2 = m2 + p2 + βipi, (2)

where βi is deformation parameter. The modification (2) nontrivially deforms
invariant hyperboloid in the energy-momentum space. This quadratic form
can be led by elementary algebraic manipulation to its canonical form

E2 +
|β|2

4
=

(
βi
|β|
pi +

|β|
2

)2

+m2, |β|2 = βiβi (3)

which can be worked out by three different ways of possible interpretation.

1. First case is the following identification
m2 =

|β|2

4

E2 =

(
βi
|β|
pi +

|β|
2

)2 , (4)

which leads to the physical mass values

m = ±|β|
2
. (5)

1We use the units system ~ = c = 1.
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The solution of the second equation determines energy as

γ0E = γipi +m , γ0
2 = 1 , γi =

βi
2m

, [γi, γj]+ = 2δij. (6)

This is the linear Dirac constraint with the classical Clifford γ-algebra.
After change algebra on four-dimensional

γi → γµ =
{

(−γ0, γi) : [γµ, γν ]+ = −2gµν
}
, (7)

and using of the canonical relativistic quantization

(E, p)→ i∂µ = i(−∂0, ∂i), (8)

the Lorentz symmetry is fully valid for this case.

2. The second possible identification is
m2 = E2

|β|2

4
=

(
βi
|β|
pi +

|β|
2

)2 . (9)

In this situation we have the Einstein-type relation between energy and
rest mass

E = m, (10)

where negative mass was rejected as nonphysical, as well as the follow-
ing relation is established

βi
|β|
pi = {0,−|β|} −→ pi = {0,−βi} (11)

It physically means either rest frame or motion under constant mo-
mentum, that is generally an inertial frame. For this case the Lorentz
symmetry also holds.

3. The third possibility is
−E2 =

|β|2

4

−m2 =

(
βi
|β|
pi +

|β|
2

)2 . (12)
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which leads to the energy values

±iγ0E =
|β|
2

, γ0
2 = 1. (13)

The solution of the second equation again establishes the Dirac–Clifford
classical constraint

γ0E = γipi +m , γi = − βi
2E

, {γi, γj} = 2δij, (14)

for which the Lorentz symmetry is valid after application of the rela-
tivistic quantization procedure (7)-(8).

However, the linear deformation (2) is not the only one which gives the
Hamiltonian constraint that is a quadratic form in momentum. It be more
general Lorentz invariant constraint is naturally

E2 = m2 + p2 +
(
βi + δip

2
)
pi + αp4, (15)

where (α, βi, δi) is heptavalent family of deformation parameters. The modifi-
cation (15) is a good candidate for new type deductions in context of so called
”New Physics”. Especially so the mysterious and almost mystic question as
violation of the Lorentz symmetry in high energy physics and cosmology can
be studied by ad hoc application of the deformations of the Einstein energetic
constraint similar to (15).

The Snyder–Sidharth deformation

Let us consider now the following deformation of the Einstein constraint
(1)

E2 = m2 + p2 + α`2p4, (16)

where ` is any minimal physical scale, deduced by Sidharth (Refs. [2, 3, 4]) in
the astroparticle physics context, and investigated by Snyder [5] in context
of the infrared catastrophe of soft photons in the Compton scattering. In
fact this modification follows from the manipulation in phase space of any
special relativistic particle

i[p, x] = 1 + α`2p2 , [x, y] = O(`2) , α ∼ 1, (17)

so that we have to deal with the structure of a nondifferentiable manifold,
or lattice type model. It must be emphasized that (17) is Lorentz invariant
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deformation. Sidharth proposed taking into account the Hamiltonian con-
straint (16), and studying this deformation in wider sense as some type of
perturbational series in the minimum scale `, that can be the Planck scale
(or the Compton scale).

As in the case of the linear deformation, the Hamiltonian constraint (16)
can be seen easily lead to the canonical form

E2 +
1

4α`2
= α`2

(
p2 +

1

2α`2

)2

+m2, (18)

and as previously there are three possible mathematical interpretations of
this equation. However, in the considered deformation (16) we have not
linear or 3rd-order terms, there are only powers of p2. According to standard
rules of Quantum Theory [6, 7] this means that in considered situation the
Dirac–Clifford algebraic structure must be absent or hidden.

1. First, we can interpret the constraint equation (18) as system of two
equations 

m2 =
1

4α`2

E2 = α`2
(
p2 +

1

2α`2

)2 (19)

The first equation leads to solution that looks like formally as the
bosonic string tension

m =
1

2
√
α`
. (20)

Expressing α`2 by m, one can write the solution of the second equality
as follows

E = m+
p2

2m
. (21)

This is the Hamiltonian of a free point particle in semi-classical me-
chanics; it is a sum of the Newtonian kinetic energy and the Einstein–
Poincare rest energy correction. Interestingly (20) and (21) are con-
sistent if m is the Planck mass, and ` is the Planck length. It must
be remembered that the Planck mass defines a scale where the clas-
sical and the quantum meet. For the Planck mass, as is well known
the Schwarzschild radius equals to Compton length [8]. In comparison
with the non deformed case we have not here higher relativistic cor-
rections. After canonical quantization this is exactly the Schrödinger
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Hamiltonian of free quarks in Quantum Chromo-Dynamics (QCD) be-
cause already the quarks are heavy and so non-relativistic [9]. For the
case of vanishing scale and nonzero α as well as for vanishing α and
fixed nonzero scale `, formally m ≡ ∞ and energy is also infinite, so
that this is a nonphysical black-hole type singularity. For the large
scale limit and nonvanishing α, there mass spectrum is m = 0, and
for nonzero momentum, this system has infinite energy, so this too is a
nonphysical situation. In any case this shows that (21) is compatible
with (17).

2. The second case changes the role of energy and mass
−m2 = α`2

(
p2 +

1

2α`2

)2

−E2 =
1

4α`2

, (22)

and gives discrete energy spectrum for fixed scale `. However, it should
be mentioned that while (16) with α > 0 is true for fermions, as was
shown by Sidharth [1], α < 0 for bosons. So, for the case of fermions
we have here

iE =
1

2
√
α`
, (23)

as well as the mass one

im =
√
α`p2 +

1

2
√
α`
. (24)

(rejecting the negative value from). However, one can eliminate scale
by energy with the result

m = − p2

2E
+ E. (25)

The last equation can be rewritten in the form

E2 = mE +
p2

2
, (26)

and by using of the deformed constraint (16) it yields

m2 + p2 + α`2p4 = mE +
p2

2
. (27)
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One can find now the energy (not square of energy!), that is 4th-power
in momentum

E = m+
p2

2m
+
α`2

m
p4. (28)

So, again one can apply the canonical form of a quadratic form

E +
1

16mα`2
=
α`2

m

(
p2 +

1

4α`2

)2

+m, (29)

and consider three possible cases of identification mass-energy.

(a) The first obvious interpretation yields
m =

1

16mα`2

E =
α`2

m

(
p2 +

1

4α`2

)2 (30)

and again solution of the first equation is easy to extract

m =
1

4
√
α`
, (31)

and solution of the second equality can be written in the form of
the Pauli Hamiltonian constraint

E = m+
p2

2m
+

p4

16m3
= 4α3/2`3

(
p2 +

1

4α`2

)2

. (32)

However, one can easily see by the relation (23) that for this case
holds

iE = 2m −→ m2 = −E
2

2
< 0, (33)

and in consequence values of momentum are non hermitian, so
that we have to deal with tachyon.

Moreover, by direct using of the relation (31) together with the
formula (24) one establishes the spectrum of momentum p in de-
pendence on the minimal scale `

p = ∓ 1

2
√
α`

(√
1

2

√
5− 1− i

√
1

2

√
5 + 1

)
. (34)
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(b) The second case is
m = E

α`2

m

(
p2 +

1

4α`2

)2

=
1

16mα`2
(35)

Again, solution of the first equation is elementary

E = m = −i 1

2
√
α`

, m2 < 0, (36)

and again the tachyon is obtained – there are particles with mo-
mentum spectrum

p =

{
0,

1√
2α`

}
. (37)

This is discrete momenta spectrum for fixed scale `. For running
scale this is non compact spectrum, but compactification to the
point is done for large scale

lim
`→∞

p = 0, (38)

and it is the rest. For α = 0 and fixed scale ` there are two singular
values of the momentum p. For all ` 6= 0 and α 6= 0, the case of
nonzero p is related to the existence of tachyon.

(c) The third interpretation yields
−E =

1

16mα`2

−m =
α`2

m

(
p2 +

1

4α`2

)2 . (39)

Again by using of the relation (23) we obtain from the first equa-
tion

im =
1

8
√
α`
, (40)

and in consequence momentum spectrum is

p =

{
±i
√

1

8α

1

`
,±i
√

3

8α

1

`

}
, (41)

c©2009 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 16, No. 2, April 2009 155

so that it is again tachyonic case. By this reason this case - that is
the Pauli Hamiltonian constraint with mass related to minimum
scale describes tachyon, the hypothetical particle with velocity
faster then light.

Results for bosons can be obtained by a simple change

α −→ −|α|, (42)

and are more realistic from a current experimental particle physics
point of view. In this case the Pauli energetic constraint (28) has the
following form

E = m+
p2

2m
− |α|`

2

m
p4, (43)

and tachyon-like states are absent. We have here the solutions

E =
1

2
√
|α|`

, m =
√
|α|`p2 +

1

2
√
|α|`

, (44)

and three possible situations, that can be easily deduced from the
fermionic case presented above, with the change (42).

3. The third possible solution of the Snyder–Sidharth Hamiltonian con-
straint can be constructed by the system of equations

E2 = m2

1

4α`2
= α`2

(
p2 +

1

2α`2

)2 . (45)

First equation gives standard Einstein relation

E = m, (46)

and the second equality leads to the discrete momentum spectrum

p =

{
0,

1√
α

1

`

}
. (47)

For fixed scale ` this is discrete spectrum. For running scale this is non
compact spectrum, but compactification to the point spectrum is done
in the large scale limit

lim
`→∞

p = 0, (48)
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and it is the rest. For α = 0 and fixed scale ` there are two singular
values of the momentum p. For all ` 6= 0 and α 6= 0, the case of nonzero
p is related to the existence of a relativistic particle.

Scale-modified Compton effect

Let us consider now the case of the Compton effect with the Sidharth
Hamiltonian constraint (16). In the standard case, in the CM system, wave
vector of outgoing photon k is related to wave vector of incoming photon k0

scattered on the electron with mass m by the relation

k =
mk0

m+ k0(1− cos θ)
. (49)

The point is the modification of this wave vector according to the idea

ω2
eff = m2 + k2

eff , (50)

where keff is the corrected wave vector

k2
eff = k′2 + α`2k′4 , α = −|α|. (51)

Effectively one can obtain the relation

k′ = k + ε, (52)

where ε is the correction from non vanishing scale `

ε = [Q2 + 2mQ]2
ω

ω0

α`2

2m
, (53)

Q is the difference
Q = k − k0, (54)

and the frequencies were introduced

ω0 =
k0

m
, ω =

k

m
=

ω0

1 + ω0(1− cos θ)
. (55)

According to energy conservation law one can establish the mass of the pho-
ton as

mγ = keff − k′ = k′
(√

1 + α`2k′2 − 1

)
, (56)
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and it is non zeroth for non vanishing scales ` 6= 0. This relation leads to the
formula

mγ + k′ = k′
√

1 + α`2k′2, (57)

which can be rewritten in the form of equation for k′

α`2k′4 − 2mγk
′ −m2

γ = 0. (58)

For finite photon mass mγ > 0 and nonzeroth scale ` 6= 0 this equation has
complex solution

ω′ =
k′

m
= ωR + iωI , (59)

where ωR and ωI are real and imaginary parts of ω′

ωR = ±mγ

m

1

ηξ(η)
, (60)

ωI = ∓ωR

√
1 +

1

3
ξ3(η). (61)

Here we have introduced the function ξ(η)

ξ(η) =

√√√√√√√√√√
181/3

(
1 + sgn(α)

√
1 +

4

9
η3

)1/3

(
1 + sgn(α)

√
1 +

4

9
η3

)2/3

− 121/3η

, (62)

where η is the parameter

η3 =
4

3
α`2m2

γ. (63)

One can easily establish ε by difference of frequencies as

ε(`)

m
= ω′ − ω, (64)

and by similarly one can determine the constant Q directly from (53)

Q(`) = −m

1∓

√
1 +

2

3

mγ

m

√
6ω0

η3

√
ε(`)/m

ω

 . (65)
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By using of the relation (54) rewritten in terms of the frequencies

Q(`)

m
= ω − ω0, (66)

one can finally establish the energy gap ε as

ε(`)

m
= ω′ − ω0 + 1∓

√
1 +

2

3

√
6

η3

√
ω0

ω

mγ

m

√
ω′ − ω. (67)

Since ω′ is a complex number, one can write the gap energy by employing of
the polar representation

ε(`)

m
=
√
ε2R(`) + ε2I(`) exp (iϑ(`)) , ϑ(`) ≡ argε(`) (68)

where ϑ is a phase

ϑ = n · arctan
ωI ±

√
−1 + ax

2
+

1

2

√
(1 + ax)2 + y2

ωR − ω0 + 1±
√

1 + ax

2
+

1

2

√
(1 + ax)2 + y2

, (69)

where n is any integer, εR is real part of the gap energy

εR = ωR − ω0 + 1±
√

1 + ax

2
+

1

2

√
(1 + ax)2 + y2, (70)

and εI is its imaginary part

εI = ωI ±
√
−1 + ax

2
+

1

2

√
(1 + ax)2 + y2. (71)

Here, for shorten notation, we have introduced the abbreviations

a ≡ 2

3

√
6

η3

√
ω0

ω

mγ

m
, (72)

x ≡
√
ωR − ω

2
+

1

2

√
(ωR − ω)2 + ω2

I , (73)

y ≡
√
−ωR − ω

2
+

1

2

√
(ωR − ω)2 + ω2

I , (74)
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which are consistent for ωR ≥ ω, ωI ≥ 0, 1 + ax ≥ 0. The existence of
the scale-dependent nonzero phase (69) reflects the property of multiply con-
nected space.

However the fundamental part of multi-energy (68) can be established by
the Bohr–Sommerfeld quantization rule for the phase of energy, i.e.

ϑ = n′ · 2π, (75)

where n′ is any integer. In this case we have simply εI = 0, and the total
energy gap is determined as

ε(`)

m
= |εR(`)| =

∣∣∣∣ωR − ω0 + 1±
√
ω2
I + ax+ 1

∣∣∣∣ . (76)

Taking the minimal scale as the Planck scale ` = `P =

√
}G
c3
≈ 1.61625 ×

10−35m (in SI units) one receives the fundamental energy gap as 1 eV. The
multiple value of an energy gap can be interpreted as the multiple connected
property of Spacetime [2].

Conclusion

The supposition about non vanishing photon mass was deduced based
on a background Dark Energy or the Zero Point Field (Cf. ref. [2]) at the
Planck scale. On the other hand employing the Planck scale as the minimum
scale, it is known that spacetime geometry becomes nondifferentiable and
noncommutative. In fact it modifies the usual Lorentz symmetry existing in
the Klein–Gordon and Dirac equations.

The photon mass within the experimental constraints, but also leads to
observable results in the High Energy Gamma Ray spectrum and Gamma
Bursts astrophysics. We are full of hopes that NASA’s GLAST satellite will
throw further light on this. We emphasize that the energy–momentum rela-
tion (16) leads to a Dirac type Hamiltonian, the Dirac–Sidharth Hamiltonian
with interesting consequences in the Ultra High Energy regime [2, 3].

Formally, we have shown that Special Relativity modified by the noncom-
mutative geometry of Spacetime (16) can be resolved (i.e. Hamiltonian can
be established within) by some nontrivial classical ways. It means that the
Snyder–Sidharth deformation of the Einstein theory leads to some nontriv-
ial quantum theories, that are dependent on relations of energy E, spatial
momentum p and mass m of a relativistic particle and the minimal scale `.
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