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10 Electromagnetic Force

Equations 42 and 54 reproduces the first and second group of Maxwell’s
equations exactly. The first group of equations emerges provided a
suitable definition ofJµ is found. The task of finding this suitable
definition will be left for Paper II where a connection between and
QM and Classical Physics is sought. In order to obtain the Electro-
magnetic field tensor from equation 48, we must haveg∗µ = e for all
µ = 0, 1, 2, 3 wheree is a constant, henceg∗µν = 0. The resulting field
tensor is then given by

Fµν = ∂µAν − ∂νAµ, (55)

which as is well known, is invariant under the Gauge transformation

Aµ 7−→ Aµ + ∂µχ, (56)

which for all purposes is Maxwellian Electromagnetic field tensor
and the condition equation 56 is said to beU(1) Gauge and its ef-
fect of leaving the tensor equation 55 means the Maxwell’s theory is
U(1) gauge invariant. The above transformation equation 56 leaves
the Lagrangian

L = FµνF
µν, (57)

invariant. This Lagrangian is in actual fact the kinetic energy of the
Electromagnetic field. When one looks at equation 42 and compares
this to the exact Maxwell equation, one sees immediately that the
Lorentz Gauge Condition∂µAµ = 0 is in fact automatic, that is, it is
in-built into the system of equations.
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At this point it is important to make the realization that thequan-
tity L = FµνF

µν is in actual fact the field energy and is a scalar. Its
scalar nature makes compulsory the requirement that it be invariant
under any-kind of transformation. If the field changes in such a way
that the field energy remains invariant, this would constitute a gauge
transformation and there will exist different sets of these transforma-
tions which in actual fact are different rotational states of spacetime.
A gauge transformation is a transformation that changes thefield in
such a way that the field energy remains invariant. The caseg∗µ = e
for all µ causes the energy fieldL = FµνF

µν to be obeyU(1) symme-
try. We shall generalize this, that for any configuration or setting of
theg∗µ’s, the quantityL = FµνF

µν must remain invariant, this as shall
be shown in the next sections, leads to the energy field to obeying
S U(2) andS U(3) and alsoS U(4) symmetry hence representing the
Weak, Strong and a new force which I shall coin the Super force
which isS U(4) invariant respectively.

11 Strong Force

We proceed further to identify the equations describingS U(3) Gauge
Fields which off cause is the Strong force. Now, if just one of the
g∗µ is zero and the rest are none-zero theg∗µν = gS

µν will have none-
zero values. With this setting, then we will have as-well three none-
zero components of the vectorAµ. Let us write this Vector asGµ

instead ofAµ because this makes one to think of the Electromag-
netic force. There are only four ways in which to distribute the
zero amongst the indices ofg∗µ, that is (0, g∗1, g

∗
2, g
∗
3), (g∗0, 0, g

∗
2, g
∗
3),

(g∗0, g
∗
1, 0, g

∗
3) and (g∗0, g

∗
1, g
∗
2, 0) hence four combinations of the fields,

that is (0,G1,G2,G3), (G0, 0,G2,G3), (G0,G1, 0,G3) and (G0,G1,G2, 0),
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let us write these in a more compact way asGi
µ where is this case

i = 1, 2, 3, 4. For each of the componentsGi
µ, if we assume that we

can exchange the components without exchanging the position of
the zero, for example (0,A1,A2,A3), (0,A1,A3,A2), (0,A1,A2,A3),
(0,A1,A3,A2), (0,A1,A2,A3) and (0,A1,A3,A2), there we will have
six combinations of the Gauge Fields, let us add another index for
this, that isGi j

µ where j = 1, 2, 3, ..., 6 we will have for the field
tensor

Fi j
µν = ∂µG

i j
ν − ∂νGi j

µ + gS
µνG

i j
µGi j

ν . (58)

Now somewhat handwavingly, I shall try to fit this to what we al-
ready know. We know that there are six quarks (u,d,s,c,b,t),the i
then can be thought of as representing the flavors u,d,s,c,b,t. Quarks
have color and if we are to identify the numberj with quark color,
we run into a little problem becausei runs from 1 to 4 meaning there
should be four colors but we only know of three colors – Red, Green
and Blue. The solution to this would be that the present theory is
predicting a forth color of the quarks which we can call the neutral
color charge. We shall not worry much about this for now untilPa-
per VI thus we shall proceed and takei = 1, 2, 3, 4 to represent the
color of the quarks and accept the prediction of the theory that there
must exists a forth color for the quarks.
Now if the field energy,L = Fi j

µνF
i jµν is to be invariant under some

appropriate Gauge transformation, then the Gauge FieldsGi j
µ should

submit to the decomposition

Gi j
µ = T ik

S Gi jk
µ , (59)

whereGi jk are the generators of theS U(3) group andT ik
S are 3× 3

Gell-Mann matrices written in four dimensions andk = 1, 2, 3, ..., 8.
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The normal 3× 3 Gell-Mann matrices are given
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, (60)

and there will be as many 4× 4 Gell-Mann matrices as there are the
i’s and these will be obtained by appropriately placing zerosin the
rows and columns of the the three dimensional Gell-Mann matrices.
For the Gauge Field resulting form the the caseg∗0 = 0 we have
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T1k
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,

(61)
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and for the caseg∗1 = 0 we have
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(62)
and for the caseg∗2 = 0 we have
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(63)
and for the caseg∗3 = 0 we have
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



1
2































0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0































1
2































0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0































1
2































0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0































1
2
√

3































1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0































,

(64)
and these satisfy the Clifford Algebra

[

T im
S ,T

in
S

]

= i f mnl
S T il , (65)

where thef klm
S are the usual structural constants suitable forS U(3)

Gauge transformations. Now the Gauge FieldsGi jk
µ represents the

mediating gauge Bosons of the Strong force and these will have the
field tensor given by

Fi jk
µν = ∂µG

i jk
ν − ∂νGi jk

µ + gk
SGi jk

µ Gi jk
ν , (66)

wheregk
S are the appropriate gauge coupling constants and from this

the appropriate Gauge transformation

∂µ 7−→ ∂µ + gk
SGi jk

µ , (67)
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and

Gi jk
µ 7−→ Gi jk

µ −
1

gk
S

∂µθ
i j,k + f klm

S Ai jl
µ θ

i jm, (68)

that leaves the LagrangianL = Fi j
µνF

i jµν invariant as long as one com-
mits to mind that Fi jµν =

∑

k Fi jk
µν . Certainly, this kind of mathematics

describes the Strong force.
SU(3) symmetry arise because one of theg∗µ takes a zero value

and the rest have none-zero values that lead to a finitegS. It is pos-
sible to show that instead of thisg∗ν taking a zero value, it could take
a finite value such thatg∗µν = gS only for three Gauge Fields and the
other Gauge Field having a finiteg∗µν but this being different fromgS.
In this case, the invariance of the the LagrangianL is preserved by
a combined symmetry of SU(3) and U(1) meaning to say, the force
field unifies with the Electromagnetic field. I will not present this
unification in the paper for the sack of keeping the present paper as
short as possible thus I shall leave this for a Paper VI.

12 Weak Force

Following the above procedure, if just two of theg∗µ are equal to
zero and the rest are none-zero such that for some of the terms
g∗µν = gW

µν one is at least none-zero, then we will have as well two
none-zero components of the vectorAµ. Let us write this vector
asWµ for the same reason as before. There will be only six ways
in which to distribute the zero amongst the indices ofg∗µ (that is
C4

2 = 4!/2!2!) hence there will be six combinations of the fieldsWµ;
let us write these in a more compact way asWi

µ where in this case
i = 1, 2, 3, 4, 5, 6. For each of the componentsWi

µ, if we assume that

c©2007 C. Roy Keys Inc. – http://redshift.vif.com
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we can exchange the components without exchanging the position of
the zeros, there will be only two combinations of the Gauge Fields
Wi

µ, let us add another index for this, that isWi j
µ where j = 1, 2 we

will have for the field tensor given by

Fi j
µν = ∂µW

i j
ν − ∂νWi j

µ + gW
µνW

i j
µ Wi j

ν . (69)

Since there are six particles that take part in the Weak interaction,
the anti/electrone±, anti/mounµ±, the anti/tauτ±, the anti/electron-
neutrinoνe, the anti/moun-neutrinoνµ and the anti/tau-neutrinoντ,
then thei’s must represent these 6 states and thej most certainly rep-
resent the handedness of a particle since for the neutrinos we have
the right-handed and left-handed neutrinos or the spin state since
there can be two spin states, the spin-up and spin-down. If this
(handedness) is to be extended to the other three particles (e±, µ±,
τ±), then, they too must have this handedness property. All we know
about these particles (e±, µ±, τ±) is that they can have either a spin-
up or spin-down state and they show on property of handedness. On
spin states, all the fermion particles observed to date havespin 1/2
and none has been observed with spin−1/2. If the (e±, µ±, τ±) share
the handedness property, then, there ought to be an explanation of
why these show no handedness property. The fact that they don’t
show this property does not mean they don’t have it, it simplemeans
they all posses just one of these two states in that part of ourobserv-
able Universe. Further on, ifj represents the spin state, then there
ought to be a good reason why we do not observe the spin−1/2
state. There is need to look at these matters in a separate paper and
this will be done in Paper VI.

Now if the field energy,L = Fi j
µνF

i jνν is to be invariant under

some Gauge transformation, then the Gauge FieldsWi j
µ should, like-
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wise submit to the decomposition

Wi j
µ = T ik

WWi jk
µ , (70)

where theWi jk are the generators of theS U(2) group andT ik
W are

2× 2 Pauli matrices written in four dimensions andk = 1, 2, 3. The
normal 2× 2 Pauli matrices are given

1
2

(

0 1
1 0

)

,
1
2

(

0 −i
i 0

)

,
1
2

(

1 0
0 −1

)

, (71)

where for the caseg∗0 = g∗1 = 0 we have

T1k
W =

1
2































0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0































,
1
2































0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0































,
1
2































0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1































,

(72)
and for the caseg∗0 = g∗2 = 0 we have

T2k
W =

1
2































0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0































,
1
2































0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0































,
1
2































0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1































,

(73)
and for the caseg∗0 = g∗3 = 0 we have
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T3k
W =

1
2































0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0































,
1
2































0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0































,
1
2































0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0































,

(74)
and for the caseg∗1 = g∗2 = 0 we have

T4k
W =

1
2































0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0































,
1
2































0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0































,
1
2































1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1































,

(75)
and for the caseg∗1 = g∗3 = 0 we have

T5k
W =

1
2































0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0































,
1
2































0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0































,
1
2































1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0































,

(76)
and for the caseg∗2 = g∗3 = 0 we have

T6k
W =

1
2































0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0































,
1
2































0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0































,
1
2































1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0































,

(77)
and these like wise satisfy the Clifford Algebra
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[

T im
W ,T

in
W

]

= i f mnl
W T il

W, (78)

where the f klm
W are the usual structural constants suitable for the

S U(2). Now the Gauge FieldsWi jk
µ represents the mediating gauge

Bosons of the Strong force and these will have the field tensorgiven
by

Fi jk
µν = ∂µW

i jk
ν − ∂νWi jk

µ + gk
WWi jk

µ Wi jk
ν , (79)

wheregk
W are the appropriate gauge coupling constants and from this

the appropriate Gauge transformation

∂µ 7−→ ∂µ + gk
WWi jk

µ , (80)

and

Wi jk
µ 7−→Wi jk

µ −
1

gk
W

∂µθ
i jk + f klm

w Wi jl
µ θ

i jm, (81)

and likewise that leaves the LagrangianL = Fi j
µνF

i jµν invariant. Cer-
tainly, this kind of mathematics describes the Weak force. It should
be said that there is need to fully explore these equations inmore de-
tail. As for case of the Strong force it is possible to show that the the
Weak force unifies with Electromagnetic force under aS U(2)×U(1)
symmetry and also that it unifies simultaneously with the Strong and
Electromagnetic force under aS U(2)×S U(2). This unification will
be shown in Paper VI. The reader must note that the present expedi-
tion is not to fully explore the theory but to show that the theory has
in it the in-built structure to explain the nuclear forces otherwise the
present reading would be lengthy and tedious for the reader.
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13 Super Force

Now, if all the g∗µ , 0 such thatg∗µν = gS S
µν is a none-zero for at

least one of the indices, then for this setting there will be sixteen
combinations of the Gauge FieldsAµ and as before, lets write these
as Si

µ where i = 1, 2, 3, ..., 16. For the LagrangianL = Fi
µνF

iµν

to remain invariant, the Gauge FieldsSi
µ must submit toS U(4)

symmetry meaning to say there will be 16 intermediating Gauge
Fields Sik

µ wherek = 1, 2, 3, ..., 16. We will haveSi
µ = Tk

S SS
ik
µ

whereTk
S S is a set of 16 4× 4 matrices spanning the space of all

4 × 4 matrices. Ifγµ are the Dirac Gamma matrices, then these
16 matrices are (γµ, I, γ5, σµν, γµγ5,) whereσµν = γµγν − γνγµ and
γ5 = iΠ3

0γ
µ = iγ0γ1γ2γ3 and I is the 4× 4 identity matrix. The field

tensor of these intermediating Gauge Bosons is

Fik
µν = ∂µS

ik
ν − ∂νSik

µ + gS S
µν Sik

µ Sik
ν , (82)

wheregk
S S are the appropriate gauge coupling constants and from

this the appropriate Gauge transformation are

∂µ 7−→ ∂µ + gk
S SS

ik
µ , (83)

and

Sik
µ 7−→ Sik

µ −
1

gk
S S

∂µθ
ik + f klm

S S Sil
µθ

im, (84)

and these likewise leave the LagrangianL = Fi
µνF

iµν invariant where
Fi
µν =

∑

k Fik
µν. TheS U(4) can be broken intoS U(3)×U(1), S U(3)×

U(1) andS U(2) × S U(2) symmetry. This will be shown in Paper
VI. The prediction of theS U(4) force is in actual fact the ground
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on with the validity of the theory can be tested. It is possible to
calculate the energy range at with one expects to find the Super force.
The message is clear that we should expect some surprises at the
Large Hadron Collider which is currently under construction and is
scheduled to begin operation sometime in 2008.

14 New Geodesic Law

Lastly, I could like to address the problem raised in the section
“Problem & Quest” of the geodesic law namely that it is neither
invariant nor covariant under a change of the system of coordinates
and/or change in the frame of reference. The geodesic law equation
11 is derived (upon making proper algebraic operations) from the
scalar function called the Lagrangian

L = gµν
dxµ

ds
dxν

ds
, (85)

from the Lagrangian equation of motion namely

d
ds

(

∂L
∂ẋµ

)

− ∂L
∂xµ
= 0, (86)

where in general the Lagrangian functionL = L (xµ, ẋµ) = T (ẋµ) −
V (xµ), T is the kinetic term andV is the potential term. We note
that the Lagrangian function equation 85 contains just a kinetic term
and not the potential term. We need to find a potential term andthis
term must fulfill the Law of Equivalence. To reach that end, first
we note that even though the objectJµ is not a vector, the object
∫

Jµdxµ is a scalar and at the same time a function of thexµ. Like
the kinetic term, the object

∫

Jµdxµ is wholly a part of the fabric
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of spacetime in that it is a function ofgµν and xµ. If we set this
term to be that potential term, that isV =

∫

Jµdxµ and substitute the
resulting Lagrangian into the Lagrangian equation of motion and
then making proper algebraic operations as is done in order to arrive
at the geodesic equation 11, one arrives at the equation

d2xµ

ds2
+ Γµαν

dxα

ds
dxν

ds
+

1
2

Jµ = 0. (87)

This equation is invariant under both a change of the system of co-
ordinates and the frame of reference as long as it is understood that
(dxµ/ds)(dxµ/ds) = 1, hence it will satisfy the Law of Equivalence.
I propose this equation as the appropriate geodesic equation of mo-
tion.

15 Discussion & Conclusions

I have shown in this reading that it is possible to describe all the
known forces of Nature using a 4D geometric theory that needs not
the addition of extra dimensions as is the case with Strings Theories.
This has been achieved first by demanding that the connections as
we know them from Riemannian Geometry must have a tensor form
to avoid once and forever the problem that the GTR faces – that
of privileged systems of coordinates. This achievement is based on
a new geometry that I have coined the Reimann-Hilbert Spacetime
and this geometry without a doubt needs a thorough mathematical
investigation. For example there is no mathematical justification as
to why the object equation 49 takes the form it takes except that it
allows us to obtain the Yang-Mills Gauge Fields ([35]). Another
achievement of this geometry is that it has enabled us to achieve one

c©2007 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 15, No. 1, January 2008 18

thing that Einstein sought in a unified theory – that is, the material
field must be part and parcel of the fabric of spacetime. Einstein is
quoted as having said the left handside of his equation is like mar-
ble and the right handside is like wood and that he found wood so
ugly that his dream was to turn wood into marble. These feelings
of Einstein against his own GTR are better summed up in his own
words in a letter to Georges Lemaı̂tre (1894-1966) the Belgian Ro-
man Catholic priest on September 26 1947:

“I have found it very ugly that the field equation should be

composed of two logically independent terms which are con-

nected by addition. About justification of such feelings con-

cerning logical simplicity is to difficult to argue. I can not

help to feel and I am unable to believe that such an ugly thing

should be realized in nature.”

Einstein hoped that the final theory must be such that the ponder-
able material function (ψ) must emerge from the geometry of the
theory – this off course has been achieved in the present theory. It
will be shown in Paper II & IV thatψ is the four component Dirac
wavefunction.

An important out-come which lead to the ideas laid down here
is the revision carried out of what is a frame of reference anda sys-
tem of coordinates has lead us to the idea that it is erroneousto treat
time much the same as we do when dealing with frames of refer-
ence. It has been concluded that the way in which we have treated
time and space when it comes to coordinate transformation since
Minkowski’s 1908 pronouncement in his now famous lecture that:

“The views of space and time which I wish to lay before you

have sprung from the soil of experimental physics, and therein
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lies their strength. They are radical. Henceforth space by

itself, and time by itself, are doomed to fade away into mere

shadows, and only a kind of union of the two will preserve an

independent reality.”

is partly at fault because we have treated transformations between
reference frames and systems of coordinates in a manner thatmakes
no physical distinction between the two. If this is the case,that
space and time be treated on an equal footing irrespective ofwhether
we are dealing with space and time coordinates or frames of refer-
ence, it could mean that the labeling of points in spacetime has a
dynamic physical meaning – a clearly visible and serious desider-
atum. In so doing, time has been identified as a coordinate scalar
and this realization enabled us to introduce a vector field into the
metric which without much deliberation has been identified with the
magnetic vector potential. This prompted me to think of the metric
components as representing vector fields of the Weak and the Strong
force. By re-defining the metric, it is possible to show that 4D Yang-
Mills theory is attainable. If this is the case, then the train is set forth
to probe the foundations and origins of Yang-Mills Theory.

The resulting field equations 42 and 54 have not been explored
fully mainly because there is a need to establish a link between
Quantum and Classical Physics by giving the material function Jµ
a real physical meaning that will automatically link both Quantum
& Classical Physics. This task has been left for Paper II. In this pa-
per we merely establish this link and do briefly explore the resulting
equations. One of the interesting results from these equations is that
Dark Matter/Energy can be explained from a time varying Gravi-
tational Constant. It is shown in this paper that the presenttheory
allows for the variation of the Fundamental Physical Constants thus
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the train is set forth to explore this field.
In Paper III, having established the link between Quantum &

Classical Physics in Paper II, the theory is applied to the Universe
where it is suggested that a rotating Universe explains the origins of
mysterious Cosmological Magnetic field. The origins of the Mag-
netic field has remained a mystery and its origin sort. Further, it
seen in this cosmology that negative mass will exist and thatthe
quantisation of Quasar Redshift is a result of the spatial variation
of the speed of light and the structure of the Universe that has been
proposed in this paper so as to explain the Quasar Redshift quanti-
sation. The non-appearance of negative mass or energy in thepart
of the Universe that we reside can be understood from the asymme-
try between positive mass/energy as partially explained in my earlier
paper ([24]).

In Paper IV a new foundation of QM is laid down based on the
RHS. It is seen that this geometry implies QM exhibits a random
probabilistic nature and at the same it is non-local.

Paper VI will mainly focus on making contact with experiments,
that is, give the predictions of the theory, especially on the Super
force since this force is predicated by the theory and has never be
observed. In closing I would like to say that if the present theory is
a true description of natural reality or anything to go by as Ibelieve
it to be, then, it is without a doubt that the train and ground for a
grander understanding of the natural world from a unified perspec-
tive has been set forth. Papers II, III, IV and VI will be submitted in
due course for publication to the present Journal.

Acknowledgments:

I would like to thank, in alphabetic order of the surname, my friends for their

c©2007 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 15, No. 1, January 2008 21

unremitting support and encouragement that they have given me in writing

this paper, Rita Augustinho, Jotham Dondo, Christina Eddington, Eugene En-

gelbrecht, Daniel Moeketsi, Anna Neff, Donald Ngobeni and Jasper Snyman.

I dedicate this paper to my Professor, D. J. van der Walt for his far reaching

contributions to my-career and my-life. It is a pleasure to thank C. Roy Keys

for valuable comments and the anonymous referee(s) for going through this

paper.

References

[1] Brans C. & Dicke R. H., 1961, Phys. Rev., 124, 925.

[2] Einstein A., 1905, Annalen der Physik, 17, 981.

[3] Einstein A., 1907, Translation by Schwartz H. M., 1977, Am. Journal

of Phys., 45, 10.

[4] Einstein A., 1915, Sitzungsberichte der Preussischen Akademie der

Wissenschaften zu Berlin: Die Feldgleichungun der Gravitation,
p844-847.

[5] Einstein A., 1917, Sitz Preuss Akad. d. Wiss Phys.-Math,142.

[6] Einstein A., 1919, Spielen Gravitationsfelder in Aufbau der ma-
teriellen Elementarteilchen eine wesentliche Rolle?, Sitzungers-

ber. Preuss. Akad. Wiss.(20), 349-356.

[7] Einstein A., 1920, Antowort auf vorstehende Betrachtung, Die

Naturwissenschaften, 8, 1010-1011.

[8] Einstein A., 1921, Geometrie und Erfahrung, Sitzungersber.

Preuss. Akad. Wiss.(12-14), 123-130.

c©2007 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 15, No. 1, January 2008 22
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tivitätsheorie, Z. Phys., 37, 895-906.

[16] Kragh H. S., 1990, Cambridge Univ. Press, Dirac: A Scientifc Bi-
ography, p 275-292.

[17] Lawden D. F., 1962, Tensor Calculus& Relativity, Spottiswoode

Ballantyne & Co. Ltd. London & Colchester.

[18] Lee Y. Y., 1965, Chinese Journal of Physics, 3, No 1, 45-68.

c©2007 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 15, No. 1, January 2008 23

[19] Lorentz H. A., Versuch einer Thoerie electrischen und optischen
Erescheinungen in between Kr̈pen, Brill, Leyden.

[20] Mach E., 1893, The Science. La Salle, Ill.: Open Court Publish-
ers, 6th Eddition of the English Translation, 1960.

[21] Michelson A. A. The Relative Motion of the Earth and the Lu-
miniferous Aether.”, Amer. J. Sci. 22, 120-129, 1881.

[22] Michelson A. A. & Morley, E. W. On the Relative Motion of the
Earth and the Luminiferous Ether., Amer. J. Sci. 34, 333-345,

1887.; also see Philos. Mag. 24, 449-463, 1887.

[23] Maxwell J. C., 1873, Oxford: Clarendon Press. (Reprint of 3th Ed.,

1998, Oxford Classic Series), Trease on Electricity and Magnetism,

1, IX.

[24] Nyambuya G. G., 2007a, Dirac Equation in Curved Spacetime
– On the Anomalous Gyromagnetc Ratio, EJTP, Vol. 4 No 14,

1-11; Visit: www.ejtp.com.

[25] Nyambuya G. G., 2007b, On a Unified Field Theory

– Gravitational, Electromagnetic, Weak & the Strong

Force, Apeiron Journal, Vol. 14, Issue 3, pages 320-361.

http://redshift.vif.com/JournalFiles/V14NO4PDF/V14N4GAD.pdf

[26] Salam A., 1981, Physics News, Einstein’s Last Dream:
The Space-Time Unification of the Fundamental Forces,

Vol12, No 2: Or Visit http://www.iisc.ernet.in/academy/resonance

/Dec2005/pdf/Dec2005p246-253.pdf

[27] Schrödinger E., 1948., Proc. R. Irish Acad. A, The final Affine Law

II, 51, 205-216.

c©2007 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 15, No. 1, January 2008 24

[28] Smolin L., 2006, Houghton-Mifflin (Sept. 2006)/Penguin (UK, Feb

2007), The Trouble With Physics.

[29] Stephani H., 2004, Cambridge University Press, Relativity: An

Introduction to Special and General Relativity, 3th Edition, p 304.

[30] Thomas J. M., 1991, Adam Higler imprint by IOP Publishing ISBN

0-7503-0145-7, Michael Faraday and the Royay Institution, p74-

78.

[31] Weyl H., 1918, Sitzungsber. Preuss. Akad. Wiss(26), Gravitation

und Elektrizität, 465-478.

[32] Weyl H., 1927a, Z. Phys., Elektron und Gravitation I, 56, 330-352.

[33] Weyl H., 1927b, Proc. Nat. Acad. Sci., Gravitation and the Elec-

tron, 15, 323-334.

[34] Witten E., 2005, Nature, Unvelling String Theory, 435, 1085.

[35] Yang C. N. & Mills R., 1954, Phys. Rev. 96, 191.

[36] Zee A., 2003, Quantum Field Theory in a Nutshell, Princeton

University Press, 375.

c©2007 C. Roy Keys Inc. – http://redshift.vif.com


