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Here we present a new point of view for general relativity 
and/or space-time metrics that is remarkably different from the 
well-known viewpoint of general relativity. From this unique 
standpoint, we attempt to derive a new metric as an alternative 
to the Schwarzschild metric for any planet in the solar system. 
After determining the metric by means of some simple 
mathematical and physical manipulations, we used this 
alternative metric to recalculate the perihelion precession of 
any planet in the solar system and deflection of light that 
passes near the sun, as examples of this new viewpoint. While 
we obtained the result of classical general relativity for the 
perihelion procession, we found a slightly different result, 
relative to classical general relativity, for the deflection of 
light.  
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1) Introduction: Origins of a New Metric 
As is shown in [1], the main equations of general relativity, known as 
the Einstein field equations, can be expressed using only four basis 
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vectors, or tetrads. Additionally, it is seen that the Einstein tensor in 
terms of tetrads has the same form as the stress-energy tensor of 
electromagnetism/dynamics and the tetrads satisfy  
 α

α ν ν∂ ∂ =e j . (1) 

As stated in [1], (1) is not only a differential equation but also a 
mathematical rule which basis vectors of any metric must satisfy. 
Since every metric can be expressed in terms of some basis vectors, 
(1) also brings some certain limits for all metrics. As a result of this 
fact it is expected that all basis vectors of all metrics must satisfy (1). 
Subsequently, if there is such a rule that basis vectors must obey, it is 
expected to check this condition for the known cases. Obviously, the 
best-known case is the Schwarzschild solution, which will be checked 
in our study.  

The Schwarzschild solution is the most famous exact solution of 
the Einstein equations, thus, it has an exclusive place and a crucial 
role in general relativity. It can correctly predict the perihelion 
procession of a planet in the solar system, and can give a close 
prediction to observations for the deflection of light that passes near 
the sun. In addition, some mysterious concepts such as black holes or 
horizon problems can be investigated by means of the Schwarzschild 
metric.  

Despite this, however, there is a significant discrepancy between 
the Schwarzschild metric and [1]. The Schwarzschild metric was 
originally derived for a planet orbit around the sun, so it is expected 
that basis vectors of the Schwarzschild metric must satisfy the 
vacuum case of (1), that is α

α ν∂ ∂ =e 0  (because there is no mass 
density and mass flux outside of the sun for the solar system) or 
equivalently α

α∂ =j 0 . Since the Schwarzschild metric is  
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the basis vectors will be 

 ( )1/ 2* 2
0 01 2 / ,GM c r= −e n   

 ( ) 1/ 2* 21 2 / ,r rGM c r
−

= −e n  (x33q) 

where 0n  and rn  are unit vectors.  
From the last two equations it can easily be seen that *

0
α

α∂ ∂ ≠e 0  
and *

r
α

α∂ ∂ ≠e 0 . This suggests that the Schwarzschild metric is not a 
proper metric according to the point of view of [1] and a new metric 
for the solar system whose basis vectors satisfy (1) needs to be found. 
Hence, this was the first basis for searching a new metric as an 
alternative to the Schwarzschild metric.  

Besides the above mathematical necessity, we can also give a 
physical condition for finding a new metric. The foundation of this 
condition proposes a new and significant limit condition between the 
space-time metric and classical mechanics. For this limit condition, 
the metric in terms of tetrads for the most general case should be 
written first. As seen from (2) in [1], all basis vectors are 
perpendicular to each other, the metric in terms of tetrads for the most 
general case is ( )0x ict≡  

 2 2 2 2 2 2
0 0 1 1 2 2 3 3• • • •ds c dt dx dy dz= − + + +e e e e e e e e . (2) 

If (2) is divided by 2c dτ− , where τ is the proper time, it can be 
written as 
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2 2 22 2

31 2
0 0 1 1 2 2 3 32 2 2 2

1 • • • • vv vds dt
c d d c c cτ τ
⎛ ⎞ ⎛ ⎞− = − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

e e e e e e e e , (3) 

where 1
dxv
dτ

= , 2
dyv
dτ

=  and 3
dzv
dτ

= . Allowing  

 
22

2 2

1dS ds
d c dτ τ

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

  

(3) to become 

 
2 22 22

31 2
0 0 1 1 2 2 3 32 2 2 2• • • • vv vdS dt

d d c c cτ τ
⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

e e e e e e e e . (4) 

Here, (4) is a relativistic expression and for classical cases it is 

known that 1iv
c

 ( 1, 2,3i = ), consequently 
2

0iv
c

⎛ ⎞ ≈⎜ ⎟
⎝ ⎠

 can be taken. 

Although there are inner products of basis vectors, these do not 
disturb this limit condition, especially for planets in the solar system. 
Thus (4) can be written as 

 
22

0 02 •dS dt
d dτ τ

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

e e   

or  
 2 2

0 0•dS dt≈ e e . (5) 

On the other hand, it is known that from classical mechanics 
 ( , ; )i idS L v q t dt=  (6) 

where S is the action function, L  is the Lagrangian, iv  are velocities 
and iq  are coordinates ( 1, 2,3i = ). 
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Now we will make the limit assumption: If (5) and (6) are related 
with classical cases, we assume that actions functions in (5) and (6) 
are the same action functions, or at least, are proportional with each 
other. Then we can write  
 2 2

0 0 0( , ; ) •i iL v q t L= e e   

where 0L  is a constant proportion coefficient and it must be equal to 
2

0m c  in order to obtain flat space-time metric for a stationary object 
whose rest mass is 0m , and L  is the relativistic Lagrangian for the 
most general case. But for small speeds L  becomes equal to the 
classical mechanics’ Lagrangian. So in the light of this limit 
condition, (2) can be written as 

 
2

2 2 2 2 2 2
1 1 2 2 3 32

0

• • •Lds c dt dx dy dz
m c

⎛ ⎞
= − + + +⎜ ⎟

⎝ ⎠
e e e e e e , (7) 

where now 0m  denotes the rest mass of the any planet around sun.  
It can be easily seen from (7) that the time component of the 

Schwarzschild metric is not equal to 
2

2
0

L
m c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 for a planet in the solar 

system, but approximately equal to 
2

2 2
0 0

21 1U U
m c m c

⎛ ⎞
+ ≅ +⎜ ⎟

⎝ ⎠
, where 

U is the potential energy of the planet. Thus, there is also a need of 
the finding a new metric whose time component of it is equivalent to 

2

2
0

L
m c

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

So far we have presented our two motivations for finding a new 
metric. One motivation is based on a mathematical calculation and the 
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other is based on a physical reason. In the remainder of the study we 
will attempt to find this new metric for any planet in the solar system, 
and calculate the mathematical results of it. After we find the new 
metric for the solar system, we will present two well-known examples 
for it: perihelion precession of a planet and deflection of light. As is 
known, these two examples are well-known examples used to test the 
Schwarzschild metric or classical general relativity. Therefore, these 
examples are chosen to compare our new metrics results with results 
from classical general relativity. It is expected that the metric, which 
is derived as a result of the above-mentioned motivations, will give 
more satisfying results, or at least the same results as those from the 
Schwarzschild metric. Interpretation of these results will be our last 
task in this study, although some interpretations will be left for future 
studies. 

2) Determination of the New Metric and 
Applications of It 

Due to spherical symmetry in the solar system due to we can write 
the metric as  
 2 2 2 2 2 2 2 2 2

0 0• • • • .r rds c dt dr r d r Sin dθ θ ϕ ϕθ θ ϕ= − + + +e e e e e e e e   

Since the sun is fixed relative to planets and there is no mass 
change or current, from α

α ν∂ ∂ =e 0 , we understand that the spatial 
part of the metric must be flat. This enables us to write the metric as 
 2 2 2 2 2 2 2 2 2

0 0•ds c dt dr r d r Sin dθ θ ϕ= − + + +e e   

and determine the results.  
Since 0 0•e e  is proportional with Lagrangian, we need to find 

Lagrangian for a planet around the sun. In order to find the relativistic 
Langrangian of the planet around the sun, we assume that the planet 
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has no any kinetic energy at r →∞ (the potential energy is also zero, 
but our planet possesses 2

0m c  as rest energy), and that it has acquired 
some kinetic energy when it is placed to its own orbit at r r=  (for 

this case the potential energy is 0GMm
r

− , where G  is the universal 

gravitational constant and M is the mass of the sun). Then, the kinetic 
energy of the planet must be equal to the change in the potential 
energy (we give another way for finding relativistic Lagrangian of a 
planet around sun in the Appendix I section). Thus,  

 2 0
0

2GMmL m c
r

= + ,  

 
2

0 0• 1 Sr
r

⎛ ⎞= +⎜ ⎟
⎝ ⎠

e e ,  

where 22 /Sr GM c= . Then the metric can be written as 

 
2

2 2 2 2 2 2 2 2 21 Srds c dt dr r d r Sin d
r

θ θ ϕ⎛ ⎞= − + + + +⎜ ⎟
⎝ ⎠

. (8) 

We have obtained the metric (8), which satisfy our two conditions 
that were stated in the previous section. Now we can recalculate the 
perihelion precession and the deflection of light for (8).  

After some tedious calculations, whose details are given in the 
Appendix II section, the metric in (8) leads to the following 
precession angle: 

 2 2

6
(1 )
GM

ac e
πδ =

−
, (9) 
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where δ  is the precession angle, a  is the orbit major semi axis, and 
e  is the eccentricity. Notice that δ  in (9) is equivalent to the 
precession predicted by classical general relativity (see [2], p. 197). 

However, we cannot find the same agreement between (8) and the 
Schwarzschild metric, for the deflection of light because (8) gives the 
deflection of light as (see Appendix III section for detailed 
calculations): 

 2
0

3
2

GM
c R

π
Δ = , (10)

where Δ  is the total deflection and 0R  is the smallest distance of light 
from the center of the sun. According to classical general relativity 
(see [2], p. 190), the deflection is  

 2
0

4S
GM
c R

Δ = .  

3) Conclusions 
 Although, it seems that the main ideas and results of this study 
conflict with the majority of the ideas of general relativity, the 
primary disagreement is resulted from the Einstein’s limit condition 
between general relativity and Newtonian gravity. Einstein proposed 
as a limit condition that (see [2], p. 152) 
 2

00g Gρ∇ ∝ ,  

where ρ  is the mass density. In classical general relativity, Einstein 
connected metric tensors with only gravitation by this condition. 
However in this study it is proposed that  
 2

00g L∝  (11) 
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is the limit condition. L  can be the relativistic Lagrangian of any 
system or interaction, so there is no any constraint for L  to belong to 
any system or any interaction.  

As a result of the above facts, in classical general relativity all 
derived metrics or solutions are based on the Einstein’s limit 
condition. Consequently, all derived metrics, solutions and 
predictions are some outcomes of this condition. Since the 
Schwarzschild metric is one of these outcomes, it also contains 
features of the Einstein’s limit condition. Subsequently, black holes, 
horizons and all other predictions of the Schwarzschild metric are 
results of the Einstein’s limit condition.  

However, in this study the metric in (8) is a result of (1) and (11). 
It contains outcomes of these two requirements and does not lead to 
the well-known concepts of classical general relativity or the 
Schwarzschild metric, and actually changes some of them. At this 
stage, all these points are left as some extraordinary points to be 
investigated in future studies. But there is a pleasantly clear point: 
although (8) gives the same perihelion procession amount with 
classical general relativity, it gives a different deflection amount for 
light. We know that observations do not exactly confirm the 
Schwarzschild metric’s prediction on the deflection of light. 
Therefore, the discrepancy between the Schwarzschild metric’s 
prediction and our metrics prediction for the deflection of light is a 
key factor to test the validity of (8) and consequently to test the 
validity of (1) and (11). 

Appendix I 
In this section we derive relativistic Lagrangian for some objects 
whose rest mass is 0m  and speed is adequately small, and we give 
some other useful calculations. 
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Consider a freely moving object whose rest mass is 0m . As a 
result of reasons that are mentioned in previous sections, the metric 
for this object will be 

 
2

2 2 2 2 2 2

0

Lds c dt dx dy dz
L

⎛ ⎞
= − + + +⎜ ⎟

⎝ ⎠
. (AI.1) 

Dividing (AI.1) by dτ , where τ  is the proper time, yields 

 
22

2 2 2

0

ds Lc t v
d Lτ

⎛ ⎞⎛ ⎞ = − −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (AI.2) 

where the dot denotes /d dτ  and  

 
2 2 2

2 dx dy dzv
d d dτ τ τ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.  

We can choose 
2ds

dτ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 as any constant (say 2b− ). Thus (AI.2) 

becomes  

 
2

2 2 2 2

0

Lb c t v
L

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (AI.3) 

(AI.3) gives the following geodesic equation for t  

 
2

0

0d L t
d Lτ

⎡ ⎤⎛ ⎞
⎢ ⎥ =⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

. (AI.4) 

Solution of (AI.4) is 

 
2

0

Lt
L

ε
−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (AI.5) 
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where ε  is the integration constant and can be determined easily. 
Since (AI.5) is valid for all values of L  and v , for an object at rest, in 
order to obtain a flat space-time metric, 0L L=  (see (AI.2)) and 

1dtt
dτ

= =  can be written, so 1ε = . By substituting (AI.5) into (AI.3) 

we have 

 
2

2 2 2

0

Lb c v
L

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

. (AI.6) 

(AI.6) is also valid for all values of L  and v . Consider again an 
object at rest, thus  
 2 2b c=  (AI.7) 
can be found. So (AI.6) can be written as 

 
2

2 2 2

0

Lc c v
L

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

  

or 

 0
2 21 /

LL
v c

=
−

  

which is the relativistic Lagrangian and the relativistic kinetic energy 
of a freely moving object. We can find easily that 
 2

0 0L m c= ,  

then 

 
2

0
2 21 /

m cL
v c

=
−

. (AI.8) 
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Since (AI.8) is the relativistic Lagrangian of a freely moving 
object, for an object that is moving in any potential the Lagrangian 
should be 

 
2

20
02 2

1
21 /

m cL m v U
v c

= + −
−

, (AI.9) 

where (do not confuse /d dτ  with /d dt )  

 
2 2 2

2 dx dy dzv
dt dt dt

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  

If we do not wish to see relativistic effects for slowly moving 
objects, we can assume that 2 2/ 0v c ≈ . Thus  

 2 2
0 0

1
2

L m c m v U≅ + −  (AI.10) 

can be obtained. Notice that (AI.10) is equivalent to the classical 
mechanics’ Lagrangian, since the additional constant terms in the 
Lagrangian can always be ignored in classical mechanics. In this case 
the action function satisfies (6).  

If we want to see relativistic effects we assume that 2 2/ 0v c ≠  but 
2 2/ 1v c . This enables us to write v v≅  and to expand (AI.9) as 

(for this case the action function satisfies (7)) 

 2 2 2
0 0 0

1 1
2 2

L m c m v m v U≅ + + − ,  

 2 2
0 0L m c m v U≅ + − .  

 
For a planet around the sun, since 

 
2

0 0
2

m v GMm
r r

= , 
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 2 0
0

2GMmL m c
r

≅ +   

can be found. 

Appendix II 
In this section, we calculate perihelion precession for the metric in 
(8). Geodesic equations of (8) are: 

 22 S

S

r trdt
d r r rτ

= −
+

, (AII.1) 

 2 2 2 2 2
3

( )S Sr r rdr c t r rSin
d r

θ θϕ
τ

+
= − + + , (AII.2) 

 22d r Cos Sin
d r
θ θ θ θϕ
τ
= − + , (AII.3) 

 ( )2d r r Cot
d r
ϕ θ θ ϕ
τ

+
= − , (AII.4) 

where dots denote /d dτ , and τ denotes the proper time. 
We can choose axes such that / 2θ π= , so 0θ = . Now we can 

solve (AII.1) and (AII.4) immediately. (AII.1) gives 

 
2

1 Srt
r

ε
−

⎛ ⎞= +⎜ ⎟
⎝ ⎠

, (AII.5) 

where ε  is the integration constant. (AII.4) gives:  

 2

j
r

ϕ = , (AII.6) 

where j  is the integration constant. 
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Instead of solving (AII.2) we can derive a simpler equation for r . 
For this we divide (8) by 2dτ , and we choose ( )2/ 1ds dτ = − . So we 
have 

 
2

2 2 2 2 2 2 2 21 1 Src t r r r Sin
r

θ θϕ⎛ ⎞− = − + + + +⎜ ⎟
⎝ ⎠

. (AII.7) 

By substituting (AII.5) and (AII.6) into (AII.7) we get 

 
2 2

2 2 2
21 1 Sr jc r

r r
ε

−
⎛ ⎞− = − + + +⎜ ⎟
⎝ ⎠

. (AII.8) 

In order to get a simpler equation, we change 1/u r=  and write 
derivates with respect to ϕ . (AII.8) becomes 

 ( ) 22 2 2 2 2 21 1 Sc r u j u j uε − ′− = − + + + , (AII.9) 

where prime denotes /d dϕ .  
The integration constant ε  can be determined by using (AII.9). 

Since (AII.9) is valid for all r  when r →∞ , 1/ 0u r= → , and 
2/ 0u r r′ ′= − → . Thus,  

 2 21/ cε =   
can be obtained. Now the metric (AII.9) becomes 

 ( ) 2 2 2 2 21 1 Sr u j u j u− ′− = − + + + . (AII.10) 

 We differentiate (AII.10) with respect to ϕ , and we have 

 ( ) 3
2 1S

S
ru u r u
j

−′′ + = + . (AII.11) 

In order to determine u  we need to solve (AII.11). Unfortunately, 
however, it is a non-linear differential equation and cannot be solved 
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exactly. Fortunately, since Sr u 1 for the solar system, 

( ) 31 1 3S Sr u r u−+ ≈ − , can be written. Then (AII.11) can be written as 

 ( )2 1 3S
S

ru u r u
j

′′ + = − ,  

 
2

2 2

31 S Sr ru u
j j

⎛ ⎞
′′ + + =⎜ ⎟

⎝ ⎠
. (AII.12) 

Since the path of a planet is investigated, and the path of a planet is 
an ellipse, 2j  must be such that  

 2 2

1
(1 )

Sr
j a e
=

−
.  

Consequently,  

 
2

2 2(1 )
S Sr r
j a e
=

−
.  

Now taking into consideration that 2 2/ 1Sr j , (AII.12) can be 
solved and u  can be found as 

 2

1
(1 )
eCosu

a e
ϕ−

≅
−

,  

where 

 
1/ 2

2

31
(1 )

Sr
a e

ϕ ϕ
⎛ ⎞

= +⎜ ⎟−⎝ ⎠
  

and ϕ  is the essential factor to determine perihelion precession. Since 
23 / (1 ) 1Sr a e−   
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1/ 2

2 2

3 311 1
(1 ) 2 (1 )

S Sr r
a e a e

⎛ ⎞ ⎛ ⎞
+ ≈ +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

.  

Thus ϕ  becomes 

 2 2

31
(1 )
GM

ac e
ϕ ϕ

⎛ ⎞
≅ +⎜ ⎟−⎝ ⎠

. (AII.13) 

Consequently, total perihelion precession is (using that for complete 
orbit 2ϕ π= ) 

 2 2

6
(1 )
GM

ac e
πδ ≅

−
. (AII.14) 

Appendix III 
In this section, we calculate the deflection of light for the metric in 
(8). Since light, which travels in a straight line, is considered in this 
case, the right hand side of (AII.12) can be dropped and u can be 
taken as 
 0(1/ )u R Cosϕ=  (AIII.1) 

where 0R  is the smallest distance of light from the center of the sun, 

and ( ) ( )1/ 22 2 2 21 3 / 1 3 / 2S Sr j r jϕ ϕ ϕ= + ≅ +  again. Naturally, this 
time the constant j  has a different value and in order to determine the 
deflection of light, j  must be found in terms of the known quantities. 
(AII.10) can be used, noting that ϕ runs from / 2π−  to / 2π+  and 
that when 0r R= , 0ϕ = . 

 ( )
0

2 2 2 2 2  1 1 S
r R

r u j u j u−

=
⎡ ⎤′− = − + + +⎣ ⎦   
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2 2

2 2
2

0 0

1 1 0Sr jj
R R

−
⎛ ⎞

− = − + + +⎜ ⎟
⎝ ⎠

.  

By assuming that 0 SR r , the last equation can be written as 

 
2

2
0 0

1 1 2 Sr j
R R

⎛ ⎞
− ≅ − − +⎜ ⎟

⎝ ⎠
.  

Thus, 
 2

02 Sj r R≅ − . (AIII.2) 

With the correction, ϕ  runs from ( )/ 2 / 2π− + Δ  to ( )/ 2 / 2π + Δ , 
where Δ  is the full angle of the deflection. Setting 0u = ( r →∞ ) for 

/ 2 / 2ϕ π= + Δ , and treating Δ  and 0/Sr R  as small, from (AIII.1) 
and (AIII.2)  

 
0

31 0
2 2 4

SrCos
R

π⎡ ⎤⎛ ⎞Δ⎛ ⎞+ − =⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

,  

 
0 0

3 3 0
2 2 8 8

S Sr rCos
R R
ππ⎡ ⎤ΔΔ

+ − − =⎢ ⎥
⎣ ⎦

. (AIII.3) 

In (AIII.3) 03 /8Sr RΔ  is negligible when compared with other terms, 
so it can be dropped. By expanding (AIII.3), 

 
0

3 0
2 8

SrSin
R
π⎡ ⎤Δ

− − ≅⎢ ⎥
⎣ ⎦

  

can be obtained. From the last expression  

 
0

3 0
2 8

Sr
R
πΔ

− ≅ ,  
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 2
0 0

3 3
4 2

Sr GM
R c R
π π

Δ ≅ = . (AIII.4) 
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