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of quantum field theory. The Dirac and the Klein-Gordon
equations are examined. The results prove that the Dirac
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whereas the Klein-Gordon equation fails to do that. Ex-
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1. Introduction

The simplest state of a massive particle is probably the state
where it is motionless and free of interaction with external fields.
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Information about the particle’s position abides by the quantum
mechanical uncertainty relations. Hence, the particle is located
within a certain volume and an expression for its density is re-
quired for a quantum mechanical description of its state. Since
wave functions of the Hilbert space are used in the Fock space,
one concludes that this requirement also holds for quantum field
theory.

A related issue is the description of such a state in quan-
tum field theory. Thus, let us review very briefly the first steps
taken by the standard method of constructing a quantum field
theory. Then, the need for a self-consistent expression for den-
sity is discussed. Later, this general analysis is examined for the
specific cases of a Dirac field and of Klein-Gordon (KG) fields.
The discussion contains new results proving the significant role
of density in the structure of quantum field theory. Some con-
cluding remarks follow.

Herein, units where A = ¢ = 1 are used. The metric is
diagonal and its entries are (1,-1,-1,-1). Greek indices run from 0
to 3. The subscript symbol ,, denotes the partial differentiation
with respect to x*. An upper dot denotes a differention with
respect to time. Only one kind of dimension is required for the
system of units used here. Thus, dimensions of a variable are
denoted by an expression of the form [L"], where the letter [L],
enclosed by square brackets, denotes the dimension of length
(and should be distinguished from the Lagrangian L).

A standard method of constructing a quantum field theory
(see e.g. Bjorken et al. 1965, Section 11.3) begins with the
equation of motion of the specific field discussed

0y =0, (1)
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where the operator O denotes the field’s equation. At this point,
a Lagrangian density £ is defined. This Lagrangian density
yields an expression for the action of the system

[= / Ld'z. 2)

L is defined so that an application of the variational principle
to its action reproduces the equations of motion (1).
The Hamiltonian density can be derived from the Lagrangian
density £. Thus,
H = ¢a_4 ~ L. (3)
o
A spatial integration of (3)

H= / Hd*z (4)

yields the Hamiltonian for the field equation (1).

An alternative and equivalent procedure can be taken. In
this case, the Lagrangian L is obtained as the spatial integral of
the Lagrangian density £ and the Hamiltonian is derived from
this Lagrangian. These alternatives are equivalent and, as shown
below, both require a self-consistent expression for density.

These steps provide the basis for other procedures taken for
accomplishing the final form of the theory’s structure. The ob-
jective of this work is to analyze the physical meaning of the
operations that begin with (1) and end with (4). The structure
of (1) can be treated in a mathematical sense as an eigenfunc-
tion/eigenvalue problem. The following analysis aims to show
how expressions obtained along the way from (1) to (4) acquire
physical meaning and physical constraints as well.
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2. The Physical Aspect of the Procedure

In the system of units used here A = 1 and the action on
the left hand side of (2) is dimensionless. Therefore, since the
dimension of d*z is [L*], one concludes that the dimension of the
Lagrangian density £ is [L™%]. Tt follows that the form of the op-
erator O of (1) boils down to the Lagrangian density and affects
the dimension of the wave function. Thus, one realizes that the
construction of the Lagrangian density changes the meaning of
the wave function: in (1) it is a complex mathematical function
whereas in the Lagrangian density it acquires dimensions. This
outcome and its consequences are used below in an analysis of
two specific cases, the Dirac field and the Klein-Gordon fields.

Now let us turn to the integral (4) where the Hamiltonian H
is obtained from the Hamiltonian density H. For this end, the
form of the Lagrangian density £ should be examined. Since
the operator O is independent of the wave function, one finds
from the Euler-Lagrange equation

o oL oL
orh o, o

(5)

that the Lagrangian density is a quadratic (or bilinear) function
of the wave function . Evidently, the equation of motion (1)
retains its form if one multiplies the Lagrangian density £ by a
numerical factor. On the other hand, the Hamiltonian (4) rep-
resents energy and, for a given system, it should have a specific
eigenvalue.

This problem is settled by means of the well known normal-
ization procedure where the wave function ¢ is multiplied by
a normalization factor which guarantees that the integral (4)
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takes the correct value. Thus, there is a need for a physically
selfconsistent expression for density.

Now, the integral of density is a Lorentz scalar, because the
particle is found in all frames. Hence, one may take the re-
quirements for particle density from electrodynamics where an
expression for charge density is readily found (see Landau et
al. 2005). Thus, in a quantum theory, density must satisfy the
following requirements:

A. The dimension of density is [L73].
B. Density is the 0-component of a 4-vector j*.

C. This 4-vector satisfies the continuity equation
jh, = 0. (6)

These points are known for a very long time. Here they are
used in an analysis of the Dirac and the KG fields. In partic-
ular, a new aspect of these requirements is shown here. Thus,
it is proved that requirements A-C are necessary, but not suffi-
cient, conditions for constructing a self-consistent expression for
density of a quantum field theory.

3. The Dirac Field

Let us begin with an analysis of the Dirac field. Here, the
matter part of the Lagrangian density is (see Bjorken et al. 1965,
p. 84)

L=y (i0, — eAy) —ml, (7)
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The Hamiltonian density is derived from the Lagrangian density
(7) by the well known relation (see Bjorken et al. 1965, p. 87)

H = Z"‘bo%—ﬁ
= Yl (—iV —eA) + Bm + V], (8)

where the summation runs on 4 and 1. (Note that 1/ is not

found in (7).) As is well known, a 4-current is defined for the
Dirac field

' =9, (9)
This 4-current satisfies requirements A-C. The density of (9) is
p =197’ =9l (10)

This expression has been used recently (see Comay 2005, Section
2) in an analysis of the Dirac field. The results are:

1. The conserved 4-current depends on 7 and on the corre-
sponding ¢, and is independent of the external field A,
Hence, one can use the positive definite density 11 and
construct an orthonormal basis for the Hilbert space of so-
lutions. This basis is not affected by changes of external
quantities.

2. Since the Dirac Lagrangian density (7) is linear in the time-
derivative 01 /0t, the corresponding Hamiltonian density
(8) does not contain derivatives of ¢ with respect to time.
The same is true for the Hamiltonian differential operator
which is extracted from the Hamiltonian density. Thus,
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one removes the particle’s density 14 from the Hamilto-
nian density (8) and obtains the Dirac Hamiltonian in the
form of a differential operator

H=a-(—iV —eA)+Pm+eV (11)

. The Dirac Hamiltonian operator is free of v, % and of
their derivatives. Let us substitute it in the fundamental
quantum mechanical equation
0

Hy =i 5 (12)
This expression is consistent with the linearity of quantum
mechanics and with the superposition principle as well.
Hence, in the case of a Dirac particle, the fundamental
quantum mechanical relation (12) takes the standard form
of an explicit first-order partial differential equation. Here
a derivative with respect to time is equated to an expres-
sion which is free of time derivatives. This property does
not hold for Hamiltonians that depend on time derivative
operators.

. If the Dirac Hamiltonian (11) is substituted into (12)
then one finds that it agrees completely with the Dirac
equation obtained as the Euler-Lagrange equation of the
Lagrangian density of the Dirac field (see Comay 2005,
Section 2). This property means that the Dirac’s Euler-
Lagrange equation does not impose additional restrictions
on the Hamiltonian’s eigenfunctions and on their corre-
sponding eigenvalues.

©2007 C. Roy Keys Inc. — http://redshift.vif.com



Apeiron, Vol. 14, No. 2, April 2007 57

5. The term eA" of the Dirac Hamiltonian correctly repre-
sents electromagnetic interactions.

These results prove that the construction of the Dirac Hamil-
tonian proceeds in a straightforward manner and that self-consistent
expressions are obtained. It is shown below that results of the
KG field are inconsistent with points 1-3, 5 above. (The KG
fields do not also satisfy point 4 above. However, this aspect is
not directly related to density. Hence, it is not discussed below.)

4. The Klein-Gordon Fields

Now let us turn to the KG equation. Here one finds two
kinds of fields: one kind uses complex wave functions and the
second kind uses real wave functions. The former is used for
describing charged KG particles and the latter is used in the
Yukawa Lagrangian density. The discussion begins with the
complex fields.

The Lagrangian density of the complex KG fields is (see Pauli
et al. 1934, section 3)

3

= (¢y—1eV ™) (oo tieV o) Z (¢ +ieArd”) (¢ p—ieAyp)—m¢*d
k=1
(13)
(The quoted expressions are rewritten in units where A = ¢ = 1.)
Here, as usual, the symbol ¢ denotes the KG wave function. V
and Aj, denote the scalar and the vector potentials, respectively.
Using, methods which have become standard, Pauli et al. (1934,
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section 3) obtain the following Hamiltonian density

3

H = (§4—ieV§")(po+ieVe)+ D (¢ +ieAwd™)(¢r—ieArp)+m ™

k=1

(14)
A 4-current is obtained for this theory and it is shown by Pauli
et al. (1934, section 3) that it satisfies requirements A-C which
can be found above, near the end of Section 2. Thus, the density
of this 4-current is (see eq. (42) therein)

p=1i(¢"do — ¢p¢) — 2V 0. (15)
and the corresponding 3-current is (see eq. (43) therein)
3 =1i((V¢)g —¢"V¢) — 2 A" 0. (16)

It turns out that (15) may be either positive or negative. Hence,
it is usually called ”charge density”.

An examination of the Hamiltonian density (14) reveals an
alarming aspect. Thus, (14) contains time derivatives of the
wave function. It follows that if a Hamiltonian can be con-
structed then the Hamiltonian density is expressed in terms of
the Hamiltonian whereas in (4) the Hamiltonian is expressed
in terms of the Hamiltonian density. Certainly, this is an un-
desirable situation. However, it is proved below that such a
Hamiltonian does not exist.

The problem of extracting a covariant differential operator
for the Hamiltonian of the complex KG field is discussed (Co-
may 2005, Section 3). It is proved there that this task cannot be
accomplished. The proof examines the highest time derivatives
of ¢*, ¢ in the Hamiltonian density (14) and in the density (15).
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For (14) one finds the product ¢ ¢ which is symmetric with
respect to ¢, ¢*, whereas the density (15) contains the antisym-
metric term ¢*¢ o — ¢h¢. Using self-evident arguments, one in-
fers from these properties that for the complex KG field, there is
no covariant differential operator representing the Hamiltonian.
This conclusion is consistent with the contents of the available
literature.

Let us turn now to the problem of constructing a Hamil-
tonian matrix of the KG equation. Here one should define a
self-consistent inner product (¢}, ¢;) for the Hilbert space and
construct an appropriate orthonormal basis. This basis is used
in a calculation of the Hamiltonian’s matrix elements. Hence,
the density expression (15) must be used. It is proved below
that such an inner product cannot be constructed for the com-
plex KG field.

Consider 2 states of a positively charged particle written in
spherical polar coordinates

¢0<t7 Ty 97 gp) = eiiWOtf(J(T)YE]O(QJ 90)7 (17)

9251 (ta Ty 67 §0) - eiiu)ltfl (T)}/lo(ea 90) (18)
where Y}, are the ordinary spherical harmonics (see de-Shalit
et al. 1963). The radial functions f;(r) belong to the lowest
energy of the corresponding angular momentum. Hence, they
do not change sign (Bransden et al. 2000) and f;(r) > 0. Using
the expression for density (15), one examines the inner product
of these functions in the case where the external potential V'
vanishes. In this case, one finds for the density operator

pP= i(¢3¢1,o - ¢3,0¢1)- (19)
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Substituting (17) and (18) into the density (19) and performing
the integration, one finds

/(WO + W1)¢0(t7 r, 97 SO)¢1 (ta T, 9? 30)7"287;7”L<0)d7“ do d¢ = 07 (20)

where the null result is obtained from the orthogonality of the
spherical harmonics Yy(0, ¢) and Yi(0, ). Hence, ¢y and ¢,
are orthogonal in the Hilbert space.

Now, let us examine these states in the case where an exter-
nal positively charged particle moves towards the origin along
the z-axis and z > 0. Hence, in this case, the external potential
V' varies in space-time and so does the density (15). Substitut-
ing the new expression for the density into the integral (20), one
finds after a straightforward calculation that the orthogonality
of ¢y and ¢, is destroyed. Indeed, the contribution of the last
term of (15) to the inner product is

U:/—Qegbo(t,r,9,¢)V¢1(t,r,9,@)r2sin(«9)d7’d9d¢ (21)

Let us examine the integrand at two volume elements defined at
points Pi(r,0,¢) and Py(r,m — 60, ), where § < 7/2. At these
points the product ¢g¢; takes the same absolute value but its
sign changes (because Yjo contains the factor cos(f) and Yy is
independent of ). On the other hand, V(r,0,¢) > V(r,m —
0, ), because the distance from the approaching charge to P
is smaller than that of P,. Hence, in (21) the contribution of
the z > 0 half of the entire space is not compensated by that of
the z < 0 half and U > 0. This result is inconsistent with the
null value obtained in (20). This example demonstrates that in
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the case of a complex KG charged field, the inner product of the
Hilbert space is destroyed.

This result proves that it is impossible to construct a self-
consistent inner product for the Hilbert space of complex KG
functions describing charged particles. It follows that a Hamil-
tonian matrix cannot be constructed for this field.

This discussion completes the proof showing that the com-
plex KG field has no self-consistent expression for density and
that its Hamiltonian cannot be constructed. Another result is
that requirements A-C (mentioned near the end of Section 2) are
only necessary conditions for a physically self-consistent expres-
sion for density of a quantum field. Indeed, the 4-vector whose
entries are (15) and (16) satisfies requirements A-C (see Pauli
et al. 1934, section 3) but it is proved above that this 4-vector
is physically unacceptable.

Let us turn to the case of the real KG field. Using the results
of the complex KG equation, one concludes that, in this case,
there is no expression for density. Indeed, substituting ¢* = ¢ in
(15), and remembering that a real KG field cannot carry charge,
one finds that the density of a real KG field vanishes identically
(Berestetskii et al. 1982).

The foregoing discussion can be used for a derivation of an-
other discrepancy of the KG equation. Here the dimension of the
field function is examined. Thus, in the Lagrangian density of
the Dirac field (7), the dimension of the operator is [L~!]. Hence,
since the dimension of the Lagrangian density is [L ], one finds
that the dimension of the Dirac field function is [L~%/2]. On the
other hand, the dimension of the operator in the KG Lagrangian
density is [L™2]. Hence, the dimension of the KG field function
is [L7!]. Therefore, it is concluded that the nonrelativistic limit
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of the KG equation disagrees with the Schroedinger equation,
because here 1 *1) represent density (Landau et al. 1959) and
has the dimension [L=3/2].

5. Conclusions

An examination of contemporary textbooks on quantum field
theory indicates that, at least in the case of the KG equation,
the validity of a density expression is generally taken for granted
when the Hamiltonian is derived from the Hamiltonian density
(see e.g. Bjorken et al. 1965, p. 26; Weinberg 1995, pp.21, 22;
Peskin et al. 1995, pp. 16-19 etc.). This work proves that den-
sity plays a significant role in the structure of quantum theories
and that it deserves an appropriate discussion in textbooks.

Another aspect of this matter is that, in principle, a massive
particle can be in a motionless state and a physical theory should
be able to describe its location. (This argument does not hold for
photons, which are massless particles.) A quantum mechanical
theory of a massive particle accomplishes this requirement by
means of a self-consistent expression for density. Since wave
functions of the Hilbert space are elements of the Fock space,
one concludes that this requirement also holds for quantum field
theory.

The issues of the Dirac and the KG equations has a long
history of debates. In particular, Dirac maintained his opin-
ion stating that the KG equation has no physical merits (see
Weinberg 1995, pp. 7, 8 and Dirac 1978). Other people have
adopted a different opinion and most (if not all) of contemporary
textbooks discuss the KG field as a physically meaningful field.
For the most of the time elapsed, this controversy was based on
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pure theoretical arguments. This situation has changed during
the last decades because new experimental data have been ac-
cumulated. Thus, the KG field function ¢ depends on a single
set of space-time coordinates. Hence, like the Dirac field v, it
describes a structureless pointlike particle. Now, experimental
data tell us that unlike Dirac particles (electrons, muons, quarks
etc.), the existence of pointlike KG particles has not been estab-
lished. In particular, it is now recognized that © mesons, which
are regarded as the primary example of a KG particle, contain
a pair of quark and antiquark and are not pointlike particles.

This state of affairs helps people take the right course and
seek for theoretical arguments that explain why experimental
data do not support the existence of KG particles.
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