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It is proved that no Hamiltonian exists for the real Klein-

Gordon field used in the Yukawa interaction. It is also

shown that a real Klein-Gordon particle can be neither in

a free isolated state nor in a bound state having an angular

momentum l > 0. The experimental data support these

conclusions. This outcome is in a complete agreement with

Dirac’s negative opinion on the Klein-Gordon equation.
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1. Introduction

About 70 years ago, the Yukawa interaction was proposed as
a quantum mechanical interpretation of the nuclear force (see
[1], p. 78). This interaction is derived from the Lagrangian
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density of a system of a Dirac field and a Klein-Gordon (KG)
field (see [2], p. 79)

LY = LD + LKG − gφψ̄ψ. (1)

Here the first term on the right hand side represents the La-
grangian density of a free Dirac field (see [2], p. 43)

LD = ψ̄(iγµ∂µ −m)ψ (2)

and the second term represents the Lagrangian density of a free
KG field (see [2], p. 16)

LKG =
1

2
(gµνφ,µφ,ν −m2φ2). (3)

The last term of (1) represents the interaction. Since the Hamil-
tonian is a Hermitian operator, the KG function φ used here is
real.

In this work, Greek indices run from 0 to 3 and Latin indices
run from 1 to 3. The Lorentz metric is diagonal and its entries
are (1,-1,-1,-1). Units where ~ = c = 1 are used. The symbol ,µ
denotes the partial differentiation with respect to xµ.

Difficulties concerning the KG Lagrangian density of a com-
plex KG function have been pointed out recently. Thus, it is
proved that a KG particle cannot interact with electromagnetic
fields: an application of the linear interaction jµAµ, where the
KG 4-current jµ is independent of the external 4-potential Aµ,
fails [3]; if the quadratic expression (pµ−eAµ)(pµ−eAµ) is used
then the inner product of the Hilbert space of the KG wave func-
tion φ is destroyed. In addition to that, there is no covariant
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differential operator representing the Hamiltonian of a complex
KG particle [4].

Another difficulty is the inconsistency of the 4-force derived
from the Yukawa potential

u(r) = −g2e−mr/r (4)

with the relativistic requirement where the 4-acceleration must
be orthogonal to the 4-velocity

aµvµ = 0. (5)

This requirement is satisfied by the electromagnetic interaction,
where the Lorentz force is

maµ = eF µνvν . (6)

Here the electromagnetic field tensor is antisymmetric Fµν =
Aν,µ − Aµ,ν and this property satisfies (5)

aµvµ =
e

m
F µνvνvµ = 0. (7)

On the other hand, the scalar function φ cannot yield an
antisymmetric tensor. Therefore, the force found in the classi-
cal limit of the Yukawa interaction is inconsistent with special
relativity.

2. Theoretical Problems with the Yukawa Field

The purpose of the present work is to prove that the La-
grangian density (1) of the real KG field φ is inconsistent with
the fundamental quantum mechanical equation

i
∂φ

∂t
= Hφ. (8)
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This task extends the validity range of the proof of [4] where the
complex KG field is discussed.

The Euler-Lagrange equations of a given Lagrangian density
are obtained from the following general expression (see [2], p.
16)

∂

∂xµ
∂L
∂ ∂φ
∂xµ

− ∂L
∂φ

= 0. (9)

Applying (9) to the KG function φ of (1), one obtains an inho-

mogeneous KG equation

(¤+m2)φ = gψ̄ψ. (10)

The following argument proves that the Euler-Lagrange equa-
tion (10) obtained from the Yukawa Lagrangian density (1) is
inconsistent with the existence of a Hamiltonian. Indeed, the
term ∂2/∂t2 of (10) and the independence of its right hand side
on the KG wave function φ, prove that it is a second order inho-
mogeneous partial differential equation. On the other hand, the
Hamiltonian equation (8) is a first order homogeneous equation.
Now, assume that at a certain instant t0, a solution φ0 of (8)
solves (10) too. Using the fact that (10) is a second order dif-
ferential equation, one finds that its first derivative with respect
to time is a free parameter. This degree of freedom proves that
an infinite number of different solutions of (10) agree with the
single solution φ0 of (8) at t0. Thus, for t > t0, just one solution
of (10) agrees with the solution of the Hamiltonian (8) and all
other solutions differ from it.

Moreover, if φ0 solves the homogeneous equation (8), then
cφ0, where c is a constant, solves it too. Therefore, at t0, an
infinite number of physically equivalent solutions that solve the
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Hamiltonian equation (8) correspond to every solution of the
inhomogeneous Euler-Lagrange equation (10) obtained from the
Yukawa Lagrangian density. (This free factor is used in a con-
struction of an orthonormal basis for the Hilbert space of solu-
tions of the Hamiltonian.)

Either of these results proves that the Yukawa Lagrangian
density (1) is inconsistent with the existence of a Hamiltonian.
It is interesting to note that the Dirac Hamiltonian agrees per-
fectly with the Euler-Lagrange equation obtained from the Dirac
Lagrangian density (2) (see [4], p. 32).

Another aspect of the lack of a Hamiltonian is the fact that
the real KG wave function has no expression for a conserved
density (see [5], pp. 42, 43). (As a matter of fact, also the
complex KG function has no expression for a positive definite
density. The corresponding quantity used for the complex KG
function is a positive or negative charge density (see [6], Section
2)). Hence, without having a self-consistent expression for den-
sity, one cannot normalize the real KG wave function φ. Thus,
no basis for a Hilbert space can be constructed and a matrix
representation for the Hamiltonian cannot exist. It means that
one cannot use a Hamiltonian density for a construction of a
Hamiltonian.

Another problem of the Yukawa Lagrangian density (1) is
that its wave function φ is real. Hence, the real Yukawa function
φ cannot be an energy-momentum eigenfunction (namely, an
eigenfunction of the operators (i∂/∂t,−i∇)), because an energy-
momentum eigenfunction has a complex factor ei(kx−ωt). There-
fore, the Yukawa particle cannot be in an isolated free state.

An analogous argument proves that a Yukawa particle cannot
exist in a bound state where the angular quantum number l >
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0. Indeed, in this case one finds legitimate states where the
quantum number m 6= 0. However, the angular part of each of
these states takes the form (see [7], p. 510).

Ylm(θ, φ) =
1√
2π
eimφΘ(θ) (11)

Evidently, for every m 6= 0 this function is complex. Hence, a
Yukawa particle cannot be in a bound state where l > 0.

A related aspect of the real Yukawa wave-function pertains
to the fundamental quantum mechanical equation (8). Thus,
real wave-functions have real time derivatives and pure imag-
inary Hamiltonian eigenvalues. This is unacceptable because
Hamiltonian eigenvalues represent energy and must be real for
a stable particle and must have a nonvanishing real part for a
decaying particle.

At this point it is clear that the real Yukawa field cannot be a
part of the current structure of quantum mechanics. Thus, one
may ask whether or not an alternative theory can describe wave
properties of a massive particle characterized by a real wave
function. The following argument proves that such a theory
cannot find an expression for the particle’s energy.

(The need for a self-consistent energy expression is manda-
tory for the real Yukawa field described by the Lagrangian den-
sity (1). Thus, the Dirac part of (1) as well as its interaction term
represent energy. Hence, in order to maintain energy balance,
one needs an energy expression for the real Yukawa field.)

As argued above, one cannot construct an expression for den-
sity of a particle described by a real wave function χ (see [5], pp.
42, 43). Hence, one must use a differential operator Ô. Now,
energy is a 0-component of a 4-vector and its dimension is [L−1].
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It follows that a differential operator for energy must be ∂/∂t
multiplied by a dimensionless factor K

Ôχ = K
∂χ

∂t
= Eχ. (12)

Now, since energy is a real quantity and so is the wave function
χ, one concludes that K is a real number.

Let us examine the simplest case of a free massive particle
which is motionless in the laboratory frame. Here the energy
takes the value of the particle’s mass E = m > 0. It follows
that the time-dependence of the real function χ is

χ(t) = χ(t = 0)eEt/K . (13)

Thus, an unreasonable result is derived where the real wave
function, describing a static state increases or decreases expo-
nentially with time. This conclusion casts doubts on the possi-
bility of constructing an alternative wave theory for a massive

particle described by a real wave function.

3. Experimental Problems with the Yukawa Theory

Turning to the experimental side, it is not surprising to find
that Nature does not provide an experimental support for the
Yukawa theory. Thus, the KG field function φ(xµ) depends on a
single set of space-time coordinates. Hence, like the Dirac field
ψ(xµ), it describes a structureless pointlike particle. Now, unlike
Dirac particles (electrons, muons, quarks etc.), the existence of
pointlike KG particles has not been established. In particular,
it is now recognized that π mesons, which are regarded as the
primary example of a KG particle, are made of a quark and an
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Figure 1: A qualitative description of the nucleon-
nucleon phenomenological potential as a function of
the distance between the nucleons’ centers.

antiquark. Hence, π mesons are not pointlike particles. Experi-
mental data confirms this conclusion (see [8], p. 499).

The Yukawa particle is a particular case of a KG particle
and π0 is the primary candidate of such particles. However, the
foregoing discussion provides a proof showing that π0 is not a
Yukawa particle. Indeed, as stated above, it is not a pointlike
particle. Moreover, the lifetime of π0 is about 10−16 seconds
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(see [8], p. 500). Thus, having a relativistic velocity, the length
of its path is more than 107 fermi. This length is much larger
than the nucleon’s radius which is about 1.2 fermi. Hence, π0

is a free particle for the most of its lifetime, contrary to the
above mentioned restriction on a Yukawa particle, stating that
it cannot be in a free state.

The actual nuclear potential is inconsistent with the Yukawa
formula (4). Indeed, the nuclear potential is characterized by
a hard (repulsive) core and at its outer side there is a rapidly
decreasing attractive force. Its general form is described in fig.
1 (see [1], p. 97).

Thus, the figure proves that the actual nuclear potential and
its derivative with respect to r change sign. This is certainly
inconsistent with the Yukawa formula (4). Indeed, neither the
Yukawa potential nor its derivative change sign.

4. Conclusions

The discussion carried out above proves that the experimen-
tal side and the theoretical analysis carried out above, do not
support the validity of the Yukawa theory. This conclusion is in
a complete agreement with Dirac’s negative opinion on the KG
equation [9].

As stated in the first sentence of this work, the Yukawa the-
ory has been proposed a very long time ago. This theory utilizes
the real KG field. However, as of today, no textbook presents a
Hamiltonian for this field. Note that the existence of a Hamilto-
nian density (see eg. [10], p.26; [11] pp. 177, 178) does not yield
a Hamiltonian because, as stated above, it is proved that density
cannot be defined for real fields (see [5], pp. 42, 43).) Hence, a
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Hamiltonian operator cannot be extracted from the Hamiltonian
density. Similarly, a Hamiltonian matrix cannot be constracted
because one cannot define a Hilbert space without a self consis-
tent expression for density. It is further explained above that the
usage of any Hamiltonian that operates on a real wave function
is inconsistent with the standard form of quantum mechanics.
Considering these facts, one applies commonsense and concludes
that such a Hamiltonian does not exist. Hence, there is a need
for a proof showing this point. The present work fills this gap.

It is clear that the theoretical difficulties of the Yukawa field
are derived here for its original version which takes the form of
a real one component Lorentz scalar wave function used in the
Lagrangian density (1). Other kinds of wave functions which
may be related to the Yukawa idea are beyond the scope of this
work.
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