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equidistant interpolation gives a simple approach to Laplace
transform of Laguerre polynomials, which has an immediate
usefulness to determine radial matrix elements for hydrogen-
like atoms.
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Introduction

In quantum mechanics it is important (for example, in the calculation
of the electromagnetic transition probability) to have exact
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expressions for the matrix elements:

<nyl, ‘rk‘ nl, >= Iow Oy, (01 g, (Ndr,  k=integer (1)

where %gm is the radial wave function verifying the Schrddinger

equation for the Coulomb potential, n and | denoting the total and
orbital quantum numbers, respectively.
As g, is proportional to Laguerre polynomials L!, then (1)

essentially is the Laplace transform L of these polynomials. Thus in
Sec. 2 we employ the Gregory-Newton infinite interpolation to study

L{u***L? (u)}, and in Sec. 3 we apply this result to calculate (1).

Laplace transform of Laguerre polynomials via
Gregory-Newton interpolation.

We know [1] that if g(t) can be written in terms of Laguerre
polynomials [2]:

git)=> gL, p>-1 2
k=0
then defined by the integral transform:
F()=—1 [“tPetg()dt, x>0 ?)
(x+ p)tro
accepts the Gregory-Newton infinite expansion:
2 X
F)=>(Da|, | (4)
k0 k

where (x+ p)! means the gamma function T'(x+ p+1).
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Here we show that a suitable choice for g (t) generates a simple

approach to Laplace transform of Laguerre polynomials. In fact, if we
consider:

g(t):LfnGj, p>-1, s>0, m=0,1,... (5)
then by a known identity [2] it adopts the form (2) with:
m+ p S—l m-k
0, =[k j% ©
+p S

therefore g, =0, j=m+1, m+2,..Thus (3),...,(6) imply the
following Laplace transform:

L{u”pLﬁ’n (u)} = Iow e U PLP (u)du, (7

—()x(fpﬂlZ( (s 1)“[ +Ej[kj p>-1s>0,x>0 (8)

The usual method [3] to obtain (8) is to put in (7) the definition [2]
of LP(u) and to make directly the corresponding integral; with (7)
and (8) we can deduce several particular cases [3] when p=0 or/and

x=0. Our procedure exhibits the intimate relationship between
Laguerre polynomials, Laplace transform and Gregory-Newton
infinite formula for equidistant interpolation.

Matrix elements <n,l,|r*|n, >

The radial part of the Schrédinger equation for hydrogen-like atoms
(in natural units with M =1,/ =1) reads [4,5]:
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1| d*> 1(1+1) Ze® Z%*
{ :| nl — Arer gnl = 32 2 2 2 gnl (9)
0

dr? r?

It is very well known that (using the conventions found in [2] for L} ):

_2I+1 (n_|_1)| 2 I+1 ol 2r
G (r)= {(nﬂ)l} .+,e Ln.{nbj, (10)

with b = 47[820
Ze
2

[9,(n)] dr=1 (11)

o t—3

Many quantum mechanical applications [4, 6-15] require the
calculation of (1). In several publications, computation of these matrix
elements for some specific values of k can be found, but, in general,
they are restricted to the case n, =n, and the computation methods

therein are complicated. The analytical method has been used in [4,
11-13] to compute (1) when n, =n, for |, =1, or I, =1, +1 for some
values of k. For our purposes, both sets of quantum numbers and k
are arbitrary. Here we show that using the analytical method makes
the determination of (1), in general case n, =n,, very simple

(compared, for instance, with the operator-factorization technique
[16-21] employed in [9,15]). We also derive a closed-form expression
from which all the results reported in the literature are particular
cases. Such an analytical procedure is direct, since it consists of
substitution of (10) into (1) and subsequent integration using (8). In
fact, (1) adopts the form:
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1
ohi+1y+2 (n, -1 -)n, -1 -1
<n2|2||’k|n1|1>= L+, 43 | +2 |2+2{ — )1 ; |2 |
b n:-n, (n +1)!(n, +1,)! (12)

0 (n1+n2)r
J’ei by, Hﬁlﬁkﬂl—ﬁiﬁ; (ﬂ} L?llzzjli—l [ﬂjdr
5 bn, bn,
where we can use the definition [2] of Laguerre polynomials
mht(_1)d n, +Il ‘
e = o N N - IR )
s bny = q! (n-l-1-qg){ bn

the change of variable t = bz_r and the result (8) to obtain the closed-
n2

form relation:

L+, +2 ok n,—1,-1
k 27 (N, =)™
nZIZ | r | nlll - N+l +k+2 nl n2
(n, +n,)%=™

1
{(n1 —1,-1)X(n, -1, —1)!}2 "&t et (—1)92% ™ nmnd
(n1+|1)!(n2 +|2)! q=0 m=0 q!(n1+nz)q (nl_nz)m

(14)

[ n +1, j( n, +1, j(ll—lz+k+l+qj(l+l Tk 240)!
1 2 :

n—lL-1-q){2l,+1+m m

From (14) it is immediate to deduce the following particular
expressions:
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N[

2Ktk (n+1)n+1)! (15)
nht(—1)d I -1 +k+1
s ET b TR Ly k2 g
= q! (n-l,-1-q n-1,-1
and
n—l-1pk
(ni vty =02 D)
2°n " (n+1)! (16)
"It (—1)° n+l k+1+q
> (2l +k +2+q)!
= q! \n-1-1-gq){n-1-1
Comments:

a). Our eq. (14) is equivalent to (56) of [9] (derived by a
complicated process based on the factorization method). Notice,
however, that in this Ref. [9] three sums have to be performed,
increasing the amount of computational work.

b). Our expression (16) reproduces the formula (12) in Sec. 2,
Chap. 4 of [11].

c). For n,=n, and |, =1, +1 whenk =-1, -3, —4, -5, our eq.
(14) yields the result in Appendix B of [8].

d). When k=-6, -5, -4, ..., 1 2, 3 formula (16) generates
the matrix elements reported in [4, 6, 8, 10-14, 20, 22-28], for
example:

<I’73> _ 2(bn)’3 <I’72> _ 2b~?
1(1+1)(21 +1)° n*2l+1)’ e (17)
bt br. ’
(r >:F’ <r>=5[3n ~1(1+1) ]
39
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and (11) is verified.
e). ForK =-2, eq.(15) implies the theorem of Pasternack-
Sternheimer [8,9]:

(nl,[r?[nl)=0, 1 =, (18)

The above remarks and the details of the analytical procedure
(employing the Laplace transform (8)) that we used show that this is,
indeed, the simplest approach to compute (1). It is very simple and
produces a closed-form formula that summarizes all the values of (1)
known in the literature.
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