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The paper analyzes the relativistic law of transformation of 
force and some accompanied physical difficulties. We focus 
our attention on the complex systems, consisting of a number 
of sub-systems i with the velocities iu  in a laboratory frame. 
We establish an analogy between the total force in such 
system and e.m.f. in a closed deforming circuit with respect to 
the force transformation law. It has been concluded that for 
these systems the relativistic law of transformation of force 
contradicts the causality principle.  
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1. Introduction 
At present time there are a lot of books and papers, claiming that 
special relativity theory (SRT) is, perhaps, physically false. 
Simultaneously it is stated that SRT is a perfect theory in its logic and 
mathematics, and thus, if SRT is incorrect physically, it could be 
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disproved only experimentally. In contrast to this widespread opinion, 
the present author assumed [1] that an intrinsic problem of 
compatibility of SRT with the causality principle might exist. In 
particular, Ref. [1] points out that causality principle was tacitly 
applied in the proof of the theorem about invariance of space-time 
interval, and it was made without sufficient justification. 
Nevertheless, the revealed causal paradox [2] later found its 
resolution in [3]. We recall that the causality principle (CP) means 
two fundamental requirements: 

1. A cause-consequence order of events is absolute. 
2. The events, which can cause essential inferences (for 

example, collision of particles), are absolute. 

One should mention that there are various definitions of the 
causality principle (see, e.g., [4, 5]). We prefer the statements 1 and 2 
as before [1, 2], because just the absolute events lie on the basis of all 
measurements in space-time, giving a physical interpretation to the 
Lorentz transformations.  

Now we emphasize that CP is not restricted to its direct 
consequences 1, 2. There exist another its consequences, which can 
be referred as “indirect.” As example we mention the requirement, 
used in ref. [6] for analysis of the Faraday induction law: an 
electromotive force in a circuit has the same sign for all inertial 
observers, and the e.m.f. should be vanished simultaneously for all of 
them. The same requirement is obviously true for a torque, acting on a 
mechanical system. One can see that all such “indirect” consequences 
of CP are not intrinsically related to the measuring procedures, 
established in relativity. However, they obviously should be fulfilled 
in a correct physical theory of space-time. One sees that all of them 
are reduced to the original problem of transformation of force. 
Therefore, an analysis of the force transformation law seems 
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important, since it elucidates the mentioned above problem: 
compatibility of SRT with the indirect consequences of CP. In the 
next section we briefly reviewed some physical difficulties, related to 
the definition of force and its transformation between different 
observers.  

2. The force transformation law: state of the art 
and something more  

It is well known that a force is a relative quantity, and its 
transformation between two inertial frames K and K′ has the form [7]  
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where v  is the velocity of K in K′, and u  is the velocity of particle in 
the frame K. One should stress that Eq. (1) is obtained from 
transformation of space-time and energy-momentum four-vectors, 
and it is applicable to any kind of interaction. However, a notion of 
force is awkward in microphysics. Hence, the law (1) is usually 
analyzed in macrophysics, which operates with the so-called 
mechanical forces and electromagnetic forces. An electromagnetic 
force is determined by the Lorentz force law 

 ( )= + ×F q E u B , (2) 

where ,E B  are the electric and magnetic fields, respectively, and u  
is the velocity of charged particle in the frame of observation. It is 
known that the electromagnetic forces between spinless particles do 
not provide a stability of any isolated system. That is why the 
“mechanical forces” are additionally introduced, which are needed to 
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provide a stability of systems. Rigorously speaking, their nature 
cannot be clearly determined; there is only the general requirement 
(1), establishing the law of their transformation. 

First time a problem of relativistic transformation of mechanical 
and electromagnetic forces was discussed in connection with the 
Trouton & Noble experiment [8-10]. This experiment dealt with a 
solid capacitor plates capable of supporting a bending moment. The 
experiment looked for a couple on the system arising out of the 
Earth’s motion. No significant rotation was observed. Recently the 
Trouton-Noble type experiment was performed by Cornille [11], 
where he did not shield the suspended condenser from external 
electric field, and certainly observed a rotation effect of condenser. 
The authors of ref. [12] explained such a result by an influence of the 
magnetic field of Earth. However, the problem at the whole seems 
non-resolved in full up to date. 

Another ambiguity is related with a nature of mechanical forces. In 
particular, Endean [10] referred to a known paradox, dealing with a 
particle sliding on a surface with a friction (Fig. 1, reproduced from 
[10]). In the frame in which the surface is stationary, the particle has 
velocity u; the normal force between the surface and the particle is N, 
the friction force =fF kN  (k is the friction coefficient); and the 
length of travel of the particle across the surface is l. Then 
measurements in both particle and surface frames are agreed on the 
magnitude of the frictional force and both agree that multiplying it by 
the relative velocity u gives the power dissipated in frictional heating. 
However, they disagree on the time interval over which this power is 
developed. Indeed, in the frame of the surface this time interval is l/u; 
in the rest frame of particle this time is reduced to γl u . Hence, both 
observers get different total energy dissipated at heat. The paradox 
can only be resolved by introducing a continuous material velocity 
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field and mechanical stress distribution at the sliding contact and 
computing quantities in the rest frame of particle [13]. 

There is another paradox concerning with the problem in Fig. 1, 
and which was not considered to the moment. It appears for observer 
K′, which moves along the normal to the surface at a constant velocity 
v. Then according to transformation (1), the normal force N remains 
unchanged. The friction force along the surface in the frame K′ is 
reduced by factor 2 21 1γ = − v c , and the additional “friction” 
force along the normal to the surface appears with the value 

Fig. 1. Particle sliding on a surface 
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A physical origin of the force (3) is unclear. Moreover, in the ultra-
relativistic case ( , )≈v u c , and for the friction coefficient k > 1, the 
force ′yF  formally can exceed N. Since the friction force Ff is 

proportional to N, that it means a vanishing of both 2 21− fv c F  and 
N forces, and hence, no energy is dissipated at heat for the observer in 
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K′. Such a situation indicates that for a moving observer the friction 
force cannot be simply expressed as kN. One of the reasons could be a 
transformation of mechanical stress distribution at the sliding contact 
into mechanical momentum for different observers, as well as an 
energy-momentum transformation for a short-range field of normal 
forces. These effects make the problem in Fig. 1 very complicated. 

Now let us consider the electromagnetic forces. There are no 
physical difficulties, when an external force exerts on a single point-
like charged free particle. They appear when a force is computed for a 
system of charged particles, moving at arbitrary velocities in 
electromagnetic field. The analysis of force transformation law faces 
with a number of problems, which can be divided into formal 
(complicating particular calculations) and physical (creating 
difficulties in physical interpretation of the results obtained). Among 
formal problems we can mention a dependence of a position of the 
system’s center of inertia on a velocity of external observer, as well as 
the impossibility to compute a total force, acting on a system, as the 
vector sum of forces, acting on each sub-system for an arbitrary 
moving observer [7]. 

Among physical problems we can designate the following. 
I. In electromagnetic interaction the force depends on acceleration 

itself, which requires not two, but three initial conditions for the 
solution of the equation of motion of an accelerated charge [14].  

II. Transformation of mechanical and electromagnetic momentum 
and a nature of electromagnetic force itself ([15] and references 
therein). 

III. Transformations of electromagnetic fields and charge density 
[16, 17]; the involvement of force transformation law into the 
alternative explanation of a length contraction and time dilation 
in the known experiments [18]. 
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IV. A self-force in an isolated non-radiative system of moving 
charges [12, 19]; the problem of “hidden” momentum [12, 20]. 

V. The force, acting on a complex non-radiative system of charged 
particles, moving at different non-zero velocities ui in a 
laboratory frame. 

In this paper we will not consider the problems I-IV, addressing to 
the mentioned references. Below we will focus our attention on the 
items V where, as we will show below, the force transformation law 
and causality requirements can contradict each other. 

The law of transformation of total force, acting on a complex 
system, represents a multi-parametric transformation, depending on 
v  (the velocity of system at the whole) and iu  (the velocities of sub-
systems). Such a transformation is not ordinary for relativistic 
physics, because usually the rotation-free transformations depend on a 
single vectorial parameter v , a relative velocity between two inertial 
frames involved. A multi-parametric force transformation includes a 
number of different transformations (1) for each sub-system i with the 
velocity parameters v  and iu . In the next section we explore the 
properties of such transformations for the simplest complex 
mechanical system, which consists of two sub-systems, moving at a 
relative velocity u . The results will be verified by the Lorentz force 
law. In section 4 we establish an analogy between a total force, acting 
on a complex mechanical system, and an e.m.f. in a deforming circuit. 
Finally, section 5 contains some conclusions. 

3. The force acting on mechanical system, 
consisting of two sub-systems 

Let us introduce into consideration a mechanical system, which 
consists of two sub-systems 1 and 2. The sub-system 1 rests in a 
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laboratory frame K, while the sub-system 2 is moving at the velocity 
u  at the considered time moment. An external force F  acts on the 
sub-system 1, while the opposite in sign force −F  acts on the sub-
system 2. In these conditions the total force, acting on the system, is 
equal to zero*. Since we omit a calculation of torque exerted on the 
system due to these forces, then the spatial coordinates of the sub-
systems 1 and 2 are not relevant. Now let us compute the total force, 
acting on the system, in an inertial reference frame K′, wherein the 
system moves at a constant velocity v . To simplify consideration 
further, we will analyze the cases, where the vectors v , u  and F  can 
lie only in two mutually orthogonal directions. One can see that four 
different combinations of these vectors are possible, when the signs of 
the velocities can be omitted (Table 1). The forces 1′F , 2′F  were 

calculated according to Eq. (1), and 1 2′ ′ ′= +totalF F F . The Table shows 
that in two cases 2, 4 the total force acting on the system, is not equal 
to zero in the frame K′. This result seems to contradict the causality 
principle. That is why it is especially interesting to construct a 
physical model of such a system and specify the applied forces. The 
simplest way to proceed is to identify both sub-systems with the 
point-like opposite charged particles, whose spatial coordinates are 
the same at the considered time moment. (The latter requirement 
allows simple summing up the forces for any inertial observer, see the 
footnote 1). In order to consider these particles as the parts of a 
mechanical system, we have to make a restriction on their motion, 
                                                        
* In general, due to relativity of simultaneity of events we cannot simply sum up 
the forces applied to the system, for different inertial observers. There are 
special conditions, when such a summation can be carried out: either the forces 
are static, or they are applied to the same spatial point. We assume that at least 
one of these conditions is fulfilled.  
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being common for them. In particular, we can assume that both 
particles are placed inside an isolating tube with thin walls, where 
they are free to move only along the tube. The force, acting on the 
particles, is due to an external electromagnetic field. Then the formal 
application of the force transformation law (1) to this system can be 
physically verified by the Lorentz force law, applied for different 
inertial observers.  

Table 1 - The result of calculation of ′totalF  acting on the system, 

consisting of two sub-systems, where totalF  is equal to zero 

( 1 2= −F F ) 
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3.1. Realization of the case 2 (v ||u ⊥F ) 
Fig. 2 shows a problem, when the case 2 of Table 1 is realized. Two 
oppositely charged particles are placed into the neutral isolating tube. 
The initial coordinates of particles are equal to each other. At this 
time moment the particle +q rests with respect to the tube, while the 
particle –q moves at the velocity u along the tube. The particle Q, 
resting in the laboratory frame K, is the source of an external field 
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acting on the charges in the tube. The tube also rests in the laboratory. 
One requires to compute the force, acting on the tube in the frame K 
and in the external inertial frame K′, wherein the frame K is moving 
at the constant velocity v along the axis x. 

The problem is immediately solved in the frame K. The 
resting particle Q creates only the electric field. Its component along 
the axis y at the location of particles +q and –q can be denoted as E. 
Then the force, acting on the particles inside the tube along the axis y 
is qE (for positive charge) and –qE (for negative charge). Hence, the 

 u +q -q 

+Q 

Isolating tube 

u’ +q -q 

+Q 
x 

y 

a) 

b) 
v 

v 

K 

K’ 

 
Fig. 2. Two point-like charged particles +q and –q are placed inside the isolating 
tube, where they are free to move along the axis x without friction. The spatial 
coordinates of both particles are equal to each other at t = 0. The tube and the 
external changed particle +Q initially rest in the laboratory frame K. The x-
coordinates of the particle +Q and particles +q,-q are equal to each other at the 
initial time moment. The particle –q has the initial velocity u along the axis x. We 
want to compute the force, acting on the tube, in the laboratory frame K (a) and in 
the external inertial frame K′, wherein the frame K moves at the constant velocity v 
along the axis x (b).  
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total force, acting on the tube, is equal to zero, if we neglect a 
polarization of isolating tube. 

Now compute the force, acting on the tube, in the frame K′. In this 
frame the external particle Q moves at the velocity v along the axis x 
at t = 0. Hence, its electric field along the axis y is 

 
2 21

′ =
−

y
EE
v c

, (4) 

and the magnetic field along the axis z is 

 
2 2 21

=
−

z
vEB

c v c
. (5) 

The Lorentz force 

 ( )′ ′ ′ ′= + ×F q E u B , (6) 

acts on each particle inside the tube, where ′u  is the velocity of 
particle in the tube for an observer in K′. For positively charged 
particle, 
 '+ =xu v , (7) 

and for negatively charged particle  

 2'
1−

+
=

+x
u vu
uv c

. (8) 

Hence, combining Eqs. (4)-(8), we obtain for both charged particles 
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From there the resulting force, acting on the tube in the frame K′ is 

( ) ( )
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Note that Eqs. (9)-(11) are in a full agreement with calculated forces 
F′1, F′2 and F′total for the case 2 in Table 1.  

Thus, we reveal that no force acts on the tube in the laboratory 
frame K, while the non-vanishing force (11) acts on the tube along the 
axis y of the frame K′.  

3.2. Realization of the case 4 (v ⊥u , F ⊥ v ). 
This case is realized for the problem, depicted in Fig. 3. There are two 
differences from Fig. 2:  

• now the y-coordinates of all charged particles are the same, 
and the electric force acts in the x-direction;  

• the laboratory frame K moves along the axis y of the external 
inertial frame K′.  

One again requires to find the force, acting on the tube in the 
frames K and K′. 

Since the particle Q rests in K, it produces only the electric field, 
which is equal to Ex at the location of particles +q and –q. Hence, the 
resultant force is equal to zero: 
 0= − =tx x xF qE qE . 

In the frame K′ the particle Q produces the electric field along the x-
axis  
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2 21

′ =
−

x
EE
v c

, 

as well as the magnetic field along the z axis 
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−
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. 

The force acting on the particles inside the tube is determined by 
the Lorentz force (6). The velocity of positive charge q has a single 
component along the axis y 
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v v 

 
Fig. 3. Two point-like charged particles +q and –q are placed inside the isolating 
tube, where they are free to move along the axis x without friction. The spatial 
coordinates of both particles are equal to each other at t = 0. The tube and the 
external changed particle +Q initially rest in the laboratory frame K. The y-
coordinates of particle +Q and particles +q,-q are equal to each other at the initial 
time moment. The particle –q has the initial velocity u along the axis x. We want to 
compute the force, acting on the tube, in the laboratory frame K (a) and in the 
external inertial frame K′, wherein the frame K moves at the constant velocity v 
along the axis y (b). 
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 ' + =yu v , (12) 

while the negative charge –q has the velocity with the components 

 2 2' 1− = −xu u v c , ' − =yu v . (13) 

Substituting Eqs. (13) and (12) into Eq. (6), we obtain: 
2
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From there we derive the following components of the total force, 
acting on the system: 

 ' ' ' 0+ −= + =xt x xF F F , 2+ −′ ′ ′= + = −yt y y
qEvuF F F

c
. (14) 

Thus, the total force (14) is not vanishing in the frame K′, and it is 
collinear to the vector v . It fully corresponds to the result of 
calculation in Table 1, case 4. 

At the same time, we have to mention that for the problems in 
Figs. 2 and 3 we tacitly implied the equality of action and reaction for 
the normal forces acting on the tube due to the charged particles. Only 
under this condition do we derive a contradiction between the force 
transformation law and “indirect” requirements of CP: the tube does 
not experience a net force in the frame K, but is experiences the non-
vanishing force in the frame K′. The equality of action and reaction 
for normal forces is certainly fulfilled in the laboratory frame K. 
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However, the same equality in the frame K′ is a matter of separate 
analysis. For example, it is known (see, e.g., [21]) that for an 
electromagnetic (EM) interaction a relationship between active and 
reactive forces is the frame-dependent quantity. The reason is a 
transformation of the momentum and energy of EM field between 
different observers. For the problems in Fig. 2, 3 the normal forces 
between the charges and tube appear due to a short-range interaction 
1 nr  (n > 2), which is electromagnetic in its nature. Therefore, the 
field of this interaction also possesses an energy and momentum, and 
a transformation of an energy-momentum four-vector should be also 
taken into account, when a net force experienced by the tube is 
computed. Since this problem is very complicated, we cannot 
conclude yet that the results of this section indicate a violation of 
“indirect” consequences of CP in relativity theory. A certain 
contradiction with CP emerges, when we leave mechanical systems 
and consider an electromotive force in the closed deforming circuits.  

4. Transformation of an electromotive force in a 
deforming circuit 

It is known that an electromotive force in a closed circuit Γ is defined 
by the equation  
 ε

Γ

= ⋅∫ f dl , (15) 

where f  is the force per unit charge. It is also well-known that the 
Faraday induction law 

 ε = − ⋅∫
S

d B dS
dt

 (16) 
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is valid for both fixed and deforming circuits Γ, restricting the area S. 
We will explore the case of deforming circuit Γ = Γ(t), where its 
deformation can be described by the velocity vector field ( ),u r t  with 
∈Γr . Then such a circuit can be considered as a complex system, 

consisting of infinite set of sub-systems, representing infinitely small 
segments ( )dl r  with the velocities ( ),u r t . In fact, we have a full 
mathematical analogy with the complex mechanical systems. Then a 
transformation of e.m.f. between two inertial frames K and K′, 
moving at a relative velocity v , can be considered as a multi-
parametric transformations with the parameter v  and an infinite set of 
parameters ( ),u r t  as well. Analyzing this transformation, we have to 
stress an essential feature of Faraday’s law transformation in 
comparison with many other relativistic problems. It is related to 
physical interpretation of the Lorentz transformations, suggested by 
Einstein in his fundamental paper [22]. Namely, if two inertial frames 
K and K′ are in relative motion, that each observer in his own rest 
frame uses his own measuring instrument to determine physical 
quantities in another frame. However, one can see that this is often 
not the case for the Faraday induction law: a measuring instrument for 
e.m.f. (voltmeter) usually represents an inherent part of the moving 
circuit, and hence, any inertial observer, regardless of his particular 
velocity with respect to the circuit, uses this voltmeter in his 
measurements. In principle, one can demand that a moving observer 
operates with his own voltmeter, included into a circuit by means of 
sliding contacts. Obviously, the problem, where all inertial observers 
use in their measurements a single voltmeter, integrated into a circuit, 
differs from the problem, where each observer uses his own 
voltmeter. Since the latter case has no practical significance, we 
analyze the transformation properties of the Faraday induction law, 
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where all observers use the same measuring instrument. Then only in 
the rest frame of voltmeter K a circular integration over Γ is carried 
out at the same instant t, determining ( )ε t . There is no physical 
meaning to integrate over the circuit at a fixed moment t′ of some 
arbitrary inertial frame K′ to find ( )ε ′ ′t  (instantaneous e.m.f.), 
because this value has no simple relation with an actual indication of 
voltmeter. In order to find such a relationship, an integration time t′ 
should be connected with t by means of the Lorentz transformation 

 ( )2γ′ = −t t vr c . (17) 

for const=t . Here v  stands for the velocity of voltmeter in the 
frame K′, and r  belongs to the closed circuit in the rest frame of 
voltmeter K. One sees from Eq. (17) that the time moments t′ are 
different for different r . This rule, where ( ),′ ′=t t r v , was named by 
Cullwick [23] as a rule for computing retarded (advanced) e.m.f. It 
appears due to the above-mentioned fact: a measuring instrument 
(voltmeter) is common for all inertial observers. 

We present such a detailed explanation of a rule for computing of 
retarding e.m.f., because in the previous papers by the author on 
Faraday’s law [24, 25], this rule was not explained in detail.  

We notice that for an arbitrary moving deforming circuit an e.m.f. 
cannot be computed analytically. At the same time, in some simple 
cases it can be easily done. Consider, for example, a problem in Fig. 
4. There is a rectangular closed circuit A-B-C-D, where the side AB 
slides along the sides BC and AD at the constant velocity v towards to 
the resting side CD. We assume that the constant force per unit charge 
f along the axis y acts in each point of the circuit. One requires finding 
an e.m.f. in the circuit for a laboratory observer K, and for an observer 
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in an inertial frame K, wherein the frame K moves at the constant 
velocity v along the axis x. 

Due to the constancy of the force f in the frame K, the e.m.f. in the 
circuit A-B-C-D is equal to zero. Under transformation of e.m.f. from 
K to K′ we have a simplified situation, where the retarding e.m.f. 
coincides with instantaneous e.m.f. in the frame K′: the constant force 
is orthogonal to the sides AD and BC, and hence, they do not 
contribute the e.m.f. Further, we can consider a circuit as a complex 
system, consisting of two sub-systems: resting in the laboratory 
fragment B-C-D-A, and moving segment A-B. Correspondingly, the 
force transformation law is different for these sub-systems. One can 
see that it corresponds to the case 2 of Table 1 ( // ⊥v u f ). Hence, 
omitting the particular calculation, we present the final result: the 
e.m.f. in the frame K′ is determined as 
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D 

f 

f 

f 

f 

v x 

y 

 
Fig. 4. A rectangular closed circuit A-B-C-D with the moving side AB can be 
considered as a complex system, consisting of a resting in a laboratory fragment B-
C-D-A and the moving segment AB. Hence, the force transformation law is different 
for these sub-systems. It leads to the appearance of e.m.f. in the circuit, when it 
moves at the constant velocity v along the axis x. At the same time, in the 
laboratory frame K the constant force f per unit charge acts in each point on the 
circuit, and the e.m.f. is vanishing.
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⎝ ⎠

fLuv
uvc
c

, (18) 

where L is the length of the segment AB. The same Eq. (18) for a 
similar problem was obtained in [6], proceeding from the Lorentz 
force law. Thus, in the frame K, 0ε = , while in the frame K′, 'ε  is 
determined by Eq. (18). In comparison with the problems in Figs. 2, 
3, we avoid the analysis of any mechanical forces with their short-
range fields, and our result certainly demonstrates a contradiction 
between the relativistic law of force transformation and CP. By the 
way, such a contradiction could be revealed earlier, since the paper by 
Marx [26], where he proved the Lorentz-invariance of the flux rule 
(16) for both fixed and deforming circuits. Indeed, we see that the rhs 
of this equation cannot be of fixed sign: in the product ⋅B dS dt  
(which is not vanishing for deforming circuits and, moreover, is 
dominating for slowly changed or constant B ) only the second 
multiplier has the fixed sign for all inertial observers, while the first 
multiplier has not. It is known that the magnetic field, constituting the 
components of the tensor of EM field, can change its sign for 
different observers. Then the product ⋅B dS dt  is an alternating 
quantity. Due to the Lorentz-invariance of flux rule, an e.m.f. also 
represents an alternating quantity. This results means a violation of 
CP.  

We note that a transformation of voltage U (and e.m.f. as well), as 
the value of fixed sign, should be guided by the law  

 ( )2 2' = ⋅U U F v c . (19) 

That is why we referred to the result (18) as the appearance of 
Lorentz-invariance of Faraday’s law [6]. We underline that this 
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statement signifies the discrepancy between Eqs. (18), (19), but not a 
violation of the flux rule itself. Moreover, the Lorentz-invariance of 
flux rule is one of the factors, leading to the mentioned contradictions 
of Eqs. (18) and (19).  

We can add that the problem in Fig. 4 cannot be simply realized in 
practice, because it is impossible to provide a constancy of f in real 
conducting circuits. Indeed, the application of constant magnetic field 
cannot give the equality f = const, when different parts of the circuit 
have different velocities. The application of constant electric field also 
does not provide a constant non-zero f, because of re-distribution of 
conduction electrons in a conductor, aiming to vanish an internal 
electric field [6]. Unfortunately, such a re-distribution of conduction 
electrons was not correctly analyzed in the papers [24, 25], and the 
experimental schemes, proposed in those papers, should be essentially 
complicated, in order to reveal the non-invariance of e.m.f. 
experimentally. 

Consideration of convenient experimental schemes for test of the 
force transformation law by Faraday’s law will be presented in a 
separate paper. 

5. Conclusion 
Thus, considering the general force transformation law (1) in 
relativity theory we applied it to a complex system, consisting of a 
number i of sub-systems, moving at the velocities iu  in a laboratory. 
The law of transformation of total force acting on such system 
represents a multi-parametric transformation, depending on v  (the 
velocity of system at the whole) and iu . Such a transformation is not 
ordinary for relativistic physics, and its compatibility with the 
causality principle has been tested. Such a test has been carried out 
with the complex mechanical systems and deforming closed circuits, 
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where an e.m.f. can be induced. We concluded that the relativistic law 
of transformation of force and causality principle comes into a certain 
contradiction, when an e.m.f. in a closed deforming circuit is 
calculated. In this connection the alternatives of electromagnetic force 
should attract more attention (in particular, Weber’s force, [27] and 
references therein). Another alternative is to re-analyze the force 
transformation law on the basis of covariant ether theories [28]. It will 
be done in a separate paper. 
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