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1. Introduction

The Klein-Gordon (KG) equation and the Dirac equation
were published in the very early days of quantum mechanics
(see [1], bottom of pp. 25, 34). The KG equation is regarded as
the relativistic quantum mechanical equation of a spin-0 mas-
sive particle and the Dirac equation describes a spin-1/2 massive
particle. The Dirac equation of an electrically charged particle
can be found in any textbook on relativistic quantum mechan-
ics or quantum electrodynamics. This equation is regarded as a
correct description of a system belonging to the domain of va-
lidity [2] of relativistic quantum mechanics. Thus, for example,
the Dirac equation can be used for the hydrogen atom if one is
ready to ignore small effects like the Lamb shift.

Unlike the Dirac equation, the KG equation is not free of
objections. Problems concerning a definition of a positive defi-
nite density were recognized very soon (see [3], pp. 7,8; [4], pp.
27-29). Note also that Dirac maintained his negative opinion on
this equation throughout his life [5]. On the other hand, claims
stating that Dirac’s opinion of the KG equation is wrong were
published (see [1], second column of p. 24).

New difficulties with the KG equation were published re-
cently [6]. Thus, new arguments proving that the KG wave
function cannot describe probability are given; it is proved that
a KG particle cannot interact with electromagnetic fields; the
classical limit of the Yukawa interaction is inconsistent with spe-
cial relativity and some other claims.

The 4-current of a particle represents specific properties of
its state, namely its density and its 3-current. The KG electro-
magnetic interaction discussed in [6] relies on the (self-evident)
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requirement stating that the 4-current of a KG particle (like
that of any other particle) should not depend on field variables
of external particles. In the discussion carried out below, this
requirement is removed and the ensuing consequences are ana-
lyzed. This work examines the structure of the Hamiltonian op-
erator of the system in relativistic quantum mechanics and the
orthonormal basis for the Hilbert space of solutions of quantum
mechanical equations. The significance of the corresponding La-
grangian density is pointed out.

Units where i = ¢ = 1 are used. The Lorentz metric g,
is diagonal and its entries are (1,-1,-1,-1). Greek indices run
from 0 to 3 and Latin ones run from 1 to 3 (unless stated oth-
erwise). The summation convention holds for a pair of upper
and lower indices. The lower case symbol , denotes the partial
differentiation with respect to z#. In particular, ¢ o = 0¢/0t.

The second Section contains an analysis of the Dirac equa-
tion. The Pauli-Weisskopf (PW) and the Feshbach-Villars (FV)
theories of the KG equation are discussed in the third and the
fourth Sections, respectively. The last Section contains a discus-
sion of the findings.

2. The Dirac Equation

Let us examine the theoretical structure of a Dirac field in-
teracting with an electromagnetic field. This subject is useful
not only for its own sake but also as an example which may be
compared with the corresponding analysis of the KG equation.
The matter part of the Lagrangian density is (see [7], p. 84)

L = [y (id, — eA,) — m]i, (1)
where v* denotes a set of four Dirac v matrices, v is the Dirac
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wave function, 1 = ¢'7° and 91 is the Hermitian conjugate of 1.
The definition v° = 3, ~* = Ba’ relates the Dirac v matrices
and the o', 3 matrices. The components of the 4-potential
are the electric potential V' and the vector potential A. Thus,
Ar = (V, A).

A variation of (1) with respect to ¢ yields the Dirac equation
(see [7], p. 84)

Y10, — eA,) Y = map. (2)
An important quantity is the 4-current of the Dirac particle
" =, (3)
which satisfies the conservation law
jh = 0. (4)

The validity of this relation is independent of the external elec-
tromagnetic field (see [8], p. 119). The 0-component of the
4-current (3) represents the density of the Dirac particle

p =1 = vy, (5)
The matter part of the Hamiltonian density is derived from

the Lagrangian density (1) by the well known relation (see [7],
p. 87)

= — L
Ho= > vo 8 ¢ :
= Yl (=iV — eA) + Bm + eV]ib, (6)
where the summation runs on ¥y and 1. (As a matter of

fact, only ¢ is found in (1)). Here quantities should be writ-
ten in terms of coordinates and conjugate momenta. However,
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this point is not essential for the discussion below. Hence, it is
omitted throughout this work.

Using the expression for the density (5), one readily extracts
from the Hamiltonian density (6) an expression for the Hamil-
tonian differential operator used in the Schroedinger picture of
relativistic quantum mechanics

H=a- (—iV—eA)+m+eV (7)

(Here the term ”Hamiltonian differential operator” denotes a
Hamiltonian like (7) which contains differential operators and
other terms, and is distinguished from the matrix form of the
Hamiltonian.)

It is well known that the Hamiltonian operator H plays a
cardinal role in the Schroedinger picture of quantum mechanics,
because it defines the time evolution and the energy states of
the system (see [7], p. 6)

9
Hip =i—. 8
p=ic 0
Now, due to the principle of superposition, quantum mechan-
ics uses equations that are linear in ¢. For this reason, the
Hamiltonian operator H of (8) should not depend on . This
requirement is satisfied by the Dirac Hamiltonian (7).

By substituting the Hamiltonian operator (7) into the quan-
tum mechanical relation (8), one obtains the Hamiltonian form
of the Dirac equation

P

- (¥ — eA) + B+ V] =i 9)
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Multiplying the Euler-Lagrange equation (2) by 7° = 3 and
putting the time derivative on the right-hand side, one realizes
that (2) is equivalent to (9). The complete agreement between (9)
and the Dirac equation (2), derived as the Euler-Lagrange equa-
tion of the Lagrangian density (1), indicates the self-consistence
of the theory.

It is interesting to note the relativistic properties of the
Hamiltonian density (6) and of the Hamiltonian operator (7).
Examining the first line of (6) and remembering that the La-
grangian density £ is a Lorentz scalar, one realizes that (6) is a
tensorial component 7% of the second rank tensor

oL
T = Zwam — Lg™. (10)

This is the required covariance property of energy density. In
classical physics, energy density is the T% component of the
energy-momentum tensor T (see [9], p. 77). Now, since the
probability density p of (5) is a O-component of a 4-vector, one
concludes that also the Hamiltonian operator H of (7) is a 0-
component of a 4-vector. Evidently, this property is essential for
satisfying covariance of the fundamental quantum mechanical
relation (8). This discussion shows just one reason for the use-
fulness of constructing the theory on the basis of a Lagrangian
density. This point is used below in the analysis of the FV
Hamiltonian.

It can be concluded that the following properties hold for the
Dirac theory:

1. The conserved 4-current depends on ¢ and on the corre-
sponding ¢, and is independent of the external field A,,.
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Hence, one can use the positive definite density v+ and
construct an orthonormal basis for the Hilbert space of so-
lutions. This basis is not affected by changes of external
quantities.

. Since the Dirac Lagrangian density (1) is linear in the time-
derivative 0v/0t, the corresponding Hamiltonian density
(6) does not contain derivatives of ¢ with respect to time.
The same is true for the Hamiltonian differential operator.
Hence, in the case of a Dirac particle, the fundamental
quantum mechanical relation (8) takes the standard form
of an explicit first-order partial differential equation. Here
a derivative with respect to time is equated to an expres-
sion which is free of time derivatives. This property does
not hold for Hamiltonians that depend on time derivative
operators.

. The differential operator representing the Dirac Hamilto-
nian (7) is easily extracted from the Hamiltonian density
(6) and is free of ¢, v and their derivatives. An examina-
tion of (8) proves that this property is consistent with the
linearity of quantum mechanics and with the superposition
principle as well.

. The equation (9) obtained from the substitution of the
Dirac Hamiltonian operator (7) into the quantum mechan-
ical relation (8), agrees completely with the Dirac equa-
tion (2) obtained as the Euler-Lagrange equation of the
Lagrangian density (1). This property means that the
Euler-Lagrange equation (2) does not impose additional
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restrictions on the Hamiltonian’s eigenfunctions and on
their corresponding eigenvalues.

5. The term eA* correctly represents electromagnetic inter-
actions.

These points indicate the self-consistency of the Dirac theory.
It is proved below that difficulties arise if one carries out an
analogous analysis of the KG equation.

3. The Pauli-Weisskopf Theory of the KG Equation

Let us turn to the PW theory of a charged KG particle (see
Section 3 of [10]). These authors use the following Lagrangian
density (see eq. (37) therein)

L = (¢ —ieVo™)(do+ieVe) —
3

> (0% + ieArd ) (b —ieArd) —mPpo. (1)
k=1
Note that here and later on, minor changes are made in the
form of quoted equations. Thus, units where A = ¢ = 1 are
introduced; the symbol ¢ denotes the KG wave function and the
electromagnetic 4-potential is A* = (V, A). On the other hand,
the Lorentz metric of quoted equations is that of the original
articles.
The Hamiltonian density associated with (11) is found next
to this equation (see eq. (37a) therein)

H = (¢ —ieVe*) (o +ieVe) +
3

> (¢ +ieAid") (b — ieArg) + mPpTe.  (12)

k=1
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The Lagrangian density (11) is used in a derivation of the
second-order KG equation of motion of a charged KG particle
(see eq. (39) therein)

0

0 L) 0
(815 zeV)(——zqub Za—+ZGAk a—+Z€Ak)¢+m¢

k=1
(13)
The conserved 4-current of the KG particle is derived too.

The 0-component of this quantity, namely the density, is (see
eq. (42) therein)

= i(¢"P0 — ¢p9) — 2eV " 9. (14)
and the corresponding current is
J=1i((V¢")o — ¢*V¢) — 2¢A¢™ 0. (15)
The density and current satisfy the continuity equation
dp
= 1
i +V.j=0. (16)

Unlike the case of a Dirac particle, here the 4-current of a KG
particle depends on derivatives of ¢ and on external electro-
magnetic quantities. Moreover, the density (14) is not positive
definite and is interpreted as charge density (see [1], pp. 25,
26). Difficulties associated with these strange and counterin-
tuitive properties of the KG particle are discussed later in this
Section.

Before proceeding with the analysis, let us write down the
canonical Hamiltonian obtained from the application of the first
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line of (6) to the Lagrangian density (11)

3
H = Obo— V20 0+ 3 (6% +icAed”) (6 — ieAcd) +m’6"o.
k=1
(17)
As mentioned (see [11], p. 68) this expression is not gauge in-
variant.

The Hamiltonian density (12) is obtained from (17) in a way
analogous to that which casts the canonical energy-momentum
tensor of electromagnetic fields into a symmetric form (see [9],
pp. 77-83). Here the divergenceless tensor is

UM = e AMj", (18)

where j” is the 4-dimensional notation of (14) and (15).

Let us now examine the issue of the Hamiltonian differential
operator required for the Schroedinger picture of the fundamen-
tal quantum mechanical relation (8). (It is shown above how
easily this task is accomplished for the Dirac Hamiltonian. In
this case one just removes the Dirac density factor ¥ty from the
Hamiltonian density (6) and extracts the required expression
(7)). This quantity is not given in [10].

The following argument proves that this task can be accom-
plished neither for the Hamiltonian density (12) nor for that of
(17). For this purpose it is enough to examine the terms contain-
ing highest order time derivatives of the Hamiltonian densities
and of the charge density, namely ¢%¢o and i(¢*¢o — ¢79),

respectively. Let H denote the required operator. Evidently,
due to the superposition principle and the linearity of quan-
tum mechanics, H should neither depend on ¢, ¢* nor on their

(©2005 C. Roy Keys Inc. — http://redshift.vif.com



Apeiron, Vol. 12, No. 1, January 2005 36

derivatives. Hence, under these restrictions on the structure of
H, it is clear that H cannot exist because P90 18 symmetric
with respect to ¢ and ¢, whereas (¢* ¢ — ¢7¢) is antisymmet-
ric with respect to these functions. This proof does not rely on
terms containing the electric charge e. Hence, it applies also to
the case of an uncharged KG particle described by a complex
field.

At this point one realizes that the Hamiltonian density (12)
cannot be used for a derivation of the Hamiltonian operator H
of (8), which is a partial differential equation. Hence, it may be
asked whether one can, at least, construct a Hamiltonian matrix
by taking the spatial integral of the Hamiltonian density (12)
(see [10], eq. (37.a))

Hy = / (6)0 — eV (65)0 + ieVy) +
> ((87)k + ieArd]) (65) 4 — ieArg;) +

m2¢;‘¢j]d3a¢. (19)

Here the indices ;; denote elements of a basis of an assumed
Hilbert space of solutions. The following lines prove that this
expression is not free of serious discrepancies.

As used in quantum mechanics, the Hamiltonian (19) has a
meaning if it is obtained by an application of an orthonormal
basis of functions spanning the Hilbert space of solutions. This
requirement is essential because the KG equation (13) is homo-
geneous. Hence, if ¢ solves (13) then let A be a constant number
and ¢’ = A¢ solves it too. Thus, multiplying ¢; and ¢; by A
one obtains H;; = A2 H;;. Now, the Hamiltonian’s eigenvalues
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should be well defined because they represent energy of states.
It follows that one must find a way for restricting the freedom
of usage of the multiplicative factor A. This goal is attained by
an application of an orthonormal basis for the Hilbert space of
solutions.

Now, as shown for a KG particle [6], the dimension of the
product ¢*¢ is [L72], whereas a normalizable function should
have the dimension [L™3] for this product. Furthermore, the
conserved density (14) is not positive definite and is interpreted
as a charge density which can take either positive or negative
values (see [1], pp. 25, 26). Hence, it is not clear how can one
construct an orthonormal basis for the Hilbert space of wave
functions for the Hamiltonian matrix (19). Indeed, a Hilbert
space requires a definition of an inner product where (¢, ¢) > 0
(see [12], pp. 73-91).

The goal of constructing an orthonormal basis for the Hilbert
space of wave functions of the KG Hamiltonian faces other diffi-
culties too. These difficulties follow the introduction of a charged
KG particle. This issue is illustrated by the following experi-
ment. Let an electron impinge on a charged KG particle (like in
a Rutherford scattering). Assume that, in spite of the problem
mentioned above, one finds a way for constructing an orthonor-
mal basis for the Hilbert space of solutions of the KG equation
at time ¢t — —oo, by using the (charge) density (14). Now,
as the electron approaches the KG particle, its electric poten-
tial V' varies and so does the KG density (14). These changes
affect the inner product based on (14). Hence, for two given
wave functions, ¢;, ¢;, this inner product has no unique value,
due to its dependence on the external, time dependent electric
potential V. Therefore, (14) cannot be used for the definition
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of the inner product required for the Hilbert space. This con-
clusion means that there is no Hilbert space for the Hamiltonian
(19). This result is just one example showing that the counter-
intuitive formula for the charge density of a KG particle (14)
entails difficulties, because the density of a specific KG particle
depends on electromagnetic quantities associated with external
particles.

The problems with the construction of an orthonormal ba-
sis for the KG Hamiltonian also affect the calculation of ex-
pectation values of other operators. (Note, for example, that
—1 f »*V ¢ d3x does not yield the momentum expectation value,
because the dimension of ¢*¢ is [L72].) Thus, in relativistic
quantum mechanics of a KG particle, one still has no way for
finding expectation values of physical quantities.

The Heisenberg picture faces the same problems. Indeed,
in this picture one uses the basis for the Hilbert space of the
Schroedinger picture at a certain time, which is defined ¢t = 0
(see [7], p. 7). Hence, the Heisenberg picture faces the same
problems. Moreover, since the Fock space is related to the
Hilbert space of solutions of the Hamiltonian (see [13], pp. 40,
41), one concludes that problems also exist with the quantum
field theory of KG particles.

4. The Feshbach-Villars Hamiltonian

Let us next turn to the theory described in the FV arti-
cle [1]. These authors construct an expression for the Hamil-
tonian differential operator of a charged KG particle that, in
the Schroedinger picture, takes the standard quantum mechan-
ical form (8). For this purpose they use a 2-component wave
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m:(i), (20)

where 1 and y are linear combinations of the KG wave function
¢ and of its time derivative ¢ (see eqn. (2.11)-(2.17) therein).
These authors present the following Hamiltonian differential op-
erator that can be used in the Schroedinger picture of (8) (see
(2.18) therein)

H = (13 +1i71)(1/2m)(p — eA)? + m73 + €V, (21)

function

where 75 and 73 are Pauli matrices.

The analysis of FV does not rely on a Lagrangian density.
Hence, as explained in Section 2, it is not clear whether or not
the Hamiltonian (21) satisfies relativistic covariance. As a mat-
ter of fact, a proof of this essential property is not found in [1].
The following analysis explains why it is impossible to construct
such a proof.

Let us analyze covariance properties of (21). As stated above,
the fundamental quantum mechanical relation (8) indicates that
(21) should be a 0-component of a 4-vector. The last term of
(21) is eV where e is a Lorentz scalar denoting the charge of the
KG particle and V' is the 0-component of the electromagnetic
4-potential A,. Hence, the last term of (21) is a O-component
of a 4-vector, as required. The second term of (21) is m7s. Here
m is a scalar denoting the KG particle’s self mass. Now, the 73
Pauli matrix certainly cannot transform like a 0-component of
a 4-vector. Therefore, the second term and the last term of (21)
have different covariant properties.

Furthermore, the first term of (21) is also inconsistent with
the last one, because it is not a O-component of a 4-vector. In-
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deed, the following expression shows the tensorial form of this
term

(b~ ¢A) = (E— V)’ — (P* — eA")(P, — eA,)g".  (22)

Here the first term on the right-hand side is a product of two
energy quantities. Hence, under a Lorentz transformation it be-
haves like a tensorial component W%, This property holds also
for the last term of (22). Here, in principle, one may alter the
tensorial rank of each term by using the relativistic metric g,,,
the Kronecker delta 0¥ = g*“g,, and the completely antisym-
metric unit tensor of the fourth rank %7, Evidently, the rank
of each of these tensors is an even number. Thus, one cannot
put the first term of (21), which is a component of an even
rank tensor W% and the last one, which belongs to an odd rank
tensor, A*, in the same equation without violating covariance.
Obviously, the factor (13+i72) and the Lorentz scalar 1/2m can-
not settle this contradiction. This discussion proves that (21)
violates relativistic covariance and therefore it takes an unac-
ceptable form of the Hamiltonian. Since (21) contains charge
independent terms that do not transform as a 0-component of
a 4-vector, one concludes that this Hamiltonian is unacceptable
for an uncharged KG particle too.

5. Concluding Remarks

The present work is a continuation of an earlier one [6] which
discusses other difficulties of the KG equation [14]. The results
of this work are described in the following lines. First, the theory
derived from the Lagrangian density of a charged Dirac particle
is discussed. It is shown that the Hamiltonian density and the
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Hamiltonian differential operator of the Schroedinger picture are
derived in a straightforward manner and the results are self-
consistent. In particular, the Euler-Lagrange equation derived
from the Dirac Lagrangian density agrees with the fundamental
quantum mechanical equation 0 /0t = H1p. Moreover, a self-
consistent orthonormal basis for the Hilbert space of solutions
can be constructed and used.

It is shown that an analogous structure does not exist for
the KG equation. An expression for the Hamiltonian differential
operator of the Schroedinger picture is not given in [10] and it
is proved above that this quantity cannot be extracted from the
KG Hamiltonian density (12). Note also that an attempt to
construct a Hamiltonian differential operator for a KG particle
without relying on a Lagrangian density [1] fails too. In this
case it is proved that the suggested Hamiltonian (21) violates
relativistic covariance and should be rejected. The noncovariant
properties of this Hamiltonian can also be inferred from the fact
that in a textbook it is relegated to a Section discussing the
nonrelativistic limit (see [15], pp. 198- 207).

Since no acceptable Hamiltonian differential operator exists
for a charged KG particle, one obviously cannot close the log-
ical cycle and prove that the Hamiltonian equation of motion
i0¢/0t = H¢ is consistent with the Euler-Lagrange equation
obtained from the KG Lagrangian density (11). This is cer-
tainly not an easy task, because the KG equation has a second-
order time derivative whereas the KG Hamiltonian density and
the fundamental quantum mechanical equation i0p/0t = H¢
contain only first-order time derivatives.

It is also proved in Section 3 that if one is ready to accept (14)
as an expression for (charge) density, then the inner product of
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the Hilbert space is destroyed. Hence, (14) is inconsistent with
a fundamental basis of quantum mechanics (see [12], p. 86).
This outcome confirms an earlier conclusion [6] stating that a
KG particle cannot carry an electric charge.

The following discussion compares the structure of the La-
grangian density of the Dirac equation with that of the KG
equation and provides a possible explanation of the origin of the
difficulties of the latter. The unit system where h = ¢ = 1 fa-
cilitates this task. Here dimension of every physical quantity is
written in terms of one unit, which is taken here to be that of
length [L]. Thus, energy, momentum and mass have the dimen-
sion [L™1].

The action S is dimensionless. Thus, the relation

dS = ( / LdPz)dt (23)

proves that the dimension of the Lagrangian density is [L™%].
The first line of (6) proves that this is also the dimension of
the Hamiltonian density H. Now, in the case of the Dirac equa-
tion, operators take the first power of energy, momentum and
mass (henceforth called energy-like operators). Therefore, the
dimension of the product ¥ is [L™3]. Thus, in the case of the
Dirac equation, terms representing energy-like operators play a
general role and take the same form for all states of the Dirac
particle. On the other hand ¢ and v represent specific infor-
mation concerning the particle’s state. This is the underlying
reason for the straightforward extraction of the Dirac Hamilto-
nian operator (7).

The structure of the KG Lagrangian density (11) (and that
of the associated Hamiltonian densities (12) and (17)) differs
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from that of the Dirac case. Here energy-like operators take
the second power. Hence, the dimension of the product ¢*¢ is
[L72]. Now, since the dimension of density is [L 2], one finds
that in the case of a complex field of an uncharged particle, the
expression for the density is i(¢*¢o — ¢¢). A complication
arises in the case of a charged particle (14), where the density
of the KG particle also depends on electromagnetic quantities.

Now, in the KG equation of motion (13), energy-like op-
erators yield energy-like terms. On the other hand, the ex-
pression for the density (14), which is not related to energy,
contains energy-like operators. Thus, energy-momentum oper-
ators (i0/0t, —iV) play two different roles in the structure of
the KG theory: in the KG equation of motion they represent
energy-momentum quantities whereas in (14) one energy opera-
tor changes its role and is used for density.

The situation becomes even more unexpected where an elec-
tric charge and electromagnetic fields are a part of the system.
Here the substitution P* — P* — e A" (see [7], p. 84 and [10],
eq. (36)) is performed. Thus, eA*, which is a companion of
energy-momentum, is carried together with the latter and plays
a part in the description of the density of a KG particle.

This discussion explains how the KG theory uses energy-
momentum operators for two distinct roles: as energy-momentum
operators representing energy balance in the KG equation, and
as a part of the expression representing a specific property of
the solution, namely its 4-current in general and its density in
particular. This ambiguity is probably the underlying reason for
the inability to extract the KG Hamiltonian operator from the
Hamiltonian density (12). Another problem of the KG particle
is shown in Section 3. Thus, if one uses the density (14), then
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the construction of a self-consistent orthonormal basis for the
Hilbert space of solutions cannot be accomplished.

The following difficulties of the KG equation are discussed
above. Some of these points are related by contrast to the sat-
isfactory properties of the Dirac equation listed at the end of
Section 2.

1.

The KG theory lacks a positive definite expression for den-
sity. The assumed charge density (14) depends on external
quantities (the electric potential V'). This expression can-
not be used for constructing a self-consistent Hilbert space
of solutions.

. The Hamiltonian density depends on time-derivatives of ¢

and ¢*. In other words, assuming that one is able to con-
struct a Hamiltonian for the KG particle then the Hamil-
tonian density depends on the Hamiltonian. This relation
cannot be regarded as a desirable one.

One cannot use the Hamiltonian density for a construction
of the Hamiltonian differential operator. In Section 4 it is
proved that another attempt to construct a Hamiltonian
differential operator fails. Thus, the theory has no covari-
ant expression for the Hamiltonian differential operator.

. Assuming that this Hamiltonian is constructed, it is not

clear in this case that the second-order KG equation is

equivalent to the first-order fundamental quantum me-
chanical equation i0¢/0t = H¢.

One cannot construct electromagnetic interactions of a
charged KG particle by using a linear factor eA* [6]. An
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application of the quadratic term (p* — eA")(p, — eA,)
destroys the structure of the Hilbert space of solutions.

No justification is given for the different meaning of the
standard energy-momentum operators, namely (i0/0t, —iV):
as energy-momentum operators in the KG equation and as
an element in the description of the 4-current.

It should be pointed out that the foregoing difficulties refer
to the KG equation that takes a fundamental dynamical role
and is derived from a Lagrangian density. On the other hand,
the KG equation can be used as a mathematical relation. For
example, components of solutions of the Dirac equation satisfy
the KG equation (see [15], p. 7).
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