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I Introduction

Classical electrodynamics, as it is taught today [1], is based
on Hertz’s formulation [2] of Maxwell’s field equations for matter
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at rest, and on the Lorentz force which describes the action of
the fields on electric particles. It appears unnecessary to formu-
late an electrodynamics for moving matter, as Hertz attempted
in his second paper of 1890 [3], since Einstein’s concept [4] of
transforming the electromagnetic field into a moving system is
supposed to cover the electric phenomena connected with the
motion of matter.

This view is not entirely shared by Feynman [5]. He empha-
sizes that there are two quite distinct laws responsible for the
creation of electric fields in a moving conductor in which Ohm’s
law ~E = η ~j holds. There is a contribution to the electric field
due to induction by a changing magnetic flux, and a second one
due to the motion of the conductor in a magnetic field. Feynman
writes that “we know of no place in physics where such a simple
and accurate general principle requires for its real understanding
an analysis in terms of two different phenomena.”

Einstein was similarly puzzled by the asymmetry inherent to
classical electrodynamics. In the introduction to his famous pa-
per of 1905 [4] he expressed his dissatisfaction about the twofold
approach in classical electrodynamics: When a current is pro-
duced in a conductor loop due to the relative motion of a magnet,
one has to distinguish between whether the conductor is at rest
and the magnet moves, or whether the magnet is at rest and the
conductor moves. In the first case Faraday’s induction law ap-
plies, and in the second case Maxwell’s electromotive force must
be adopted. Einstein sought to unify the two laws which, appar-
ently, lead to the same physical effect. The field ~v × ~B should
turn out to be a ‘pseudo-force’, similarly like the Coriolis force in
an accelerated coordinate system. The Lorentz transformation,
which Einstein re-derived from his relativity principle, appeared
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suitable to achieve the unification. Once a law is known in a
system at rest, the same law can be formulated in a moving
system by imposing ‘Lorentz invariance’. Although the Lorentz
transformation has been derived (by Voigt) for the special case
of constant velocity, Einstein assumed that his formulae for the
transformed fields would also hold when the velocity varies in
space and time [6].

In the present paper the concept of special relativity, namely
to substitute an ‘electrodynamics for moving bodies’ by an ‘elec-
trodynamics for matter at rest’ combined with a prescription
for transforming the fields, is scrutinized. In Sections III and
IV the motion of a charged particle in an electrostatic and in
a magnetostatic field, respectively, is calculated in two frames
moving at a constant velocity relatively to each other. Adopting
the relativistic expressions for the transformed fields, we obtain
ambiguous results. It turns out that Einstein’s concept is only
viable in very singular cases. It is apparently necessary to de-
velop a true electrodynamics for moving matter, in general.

II Basic equations of classical electrodynamics

Hertz [2] gave Maxwell’s equations a compact formulation:

ε0 div ~E = ρ (1)

rot ~E = −∂
~B

∂t
(2)

div ~B = 0 (3)

rot ~B = µ0
~j +

1

c2

∂ ~E

∂t
(4)
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which is valid in vacuo, when the bodies carrying charges and
currents are at rest. The mechanical force density on the electri-
fied bodies is given by the divergence of Maxwell’s stress tensor:

~f = ρ ~E +~j × ~B (5)

In Maxwell’s Treatise [7] equation (2) is not contained. In-
stead, Maxwell gave an explicit expression for the ‘electromotive
force’:

~E∗ = ~v × ~B − ∂ ~A

∂t
−∇φ (6)

where ~A is the vector potential in Coulomb gauge (div ~A = 0)

from which the magnetic field is derived: ~B = rot ~A , and φ is
the scalar potential satisfying: ∆φ = −ρ/ε0 . For matter at

rest (~v = 0), Maxwell’s electromotive force ~E∗ is identical with

the electric field ~E , as given by (1 - 4) for given charge and
current distributions. In case of a moving conductor, in which
Ohm’s law ~E = η ~j holds, the electromotive force (6) has to be

inserted for ~E, as pointed out in the Introduction.
Lorentz has multiplied (6) with the electric charge of a par-

ticle to obtain the Lorentz force [8]:

~F = q
(
~E + ~v × ~B

)
(7)

which is sometimes called the ‘fifth postulate’, in addition to
equations (1 - 4). Since the force density (5) may be derived
from (7) by assuming smeared out charge and current distribu-
tions, textbooks, such as [1], give frequently the impression that
all electromagnetic problems can be solved, in principle, with
equations (1 - 4) and (7). This is, however, not entirely true,
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as the meaning of the velocity in (7) is not quite the same as in
(6). Furthermore, it is not perfectly clear what the fields are,
when the sources in (1) and (4) are moving.

The velocity in Maxwell’s electromotive force (6) does not
pertain to the velocity of individual electric particles as in (7),

but to the volume element of a moving body. The ~v× ~B term acts
like an electric field to create a current in a moving conductor,
as already mentioned, or to produce ‘motional Stark effect’ in
a neutral atom, for example. Hence, one cannot abandon (6),

since the ~v × ~B term is not available as an electric field from (1
- 4).

Special relativity is supposed to extend classical electrody-
namics for matter at rest to all situations where matter moves.
The five classical postulates of electrodynamics are, therefore,
complemented by a further postulate, the Lorentz transforma-
tion, which yields the transformed fields acting on a charge in a
moving system [4]:

E ′x = Ex B′x = Bx

E ′y = γ (Ey − v Bz) , B′y = γ
(
By +

v

c2
Ez

)
, γ = 1/

√
1− β2

E ′z = γ (Ez + v By) , B′z = γ
(
Bz −

v

c2
Ey

)
, β =

v

c
(8)

Here it is assumed that the fields are given in a system (x, y, z)
at rest, and transform into new fields in a system (x′, y′, z′),
which moves with velocity v parallel to the x-axis.

The Lorentz force must be contained in (8) for the follow-
ing reason: The force on a charge, which is at rest relative to
the sources in (1) and (4), is known to be q ~E. When the charge
moves, the electric field in the rest-frame of the charge can be ob-
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tained by transforming the electric field according to (8), which
should yield the force (7). This is, indeed, the case for β2 � 1.

For β ∼ 1, however, the force q ~E ′, perpendicular to the velocity,
is larger than q ~E by the γ-factor. It would follow then that (7)
cannot be an exact law.

On the other hand, it is found experimentally that for par-
ticles moving with velocity v ∼ c equation (7) does apply, as
long as radiation damping can be neglected. The way out of
the impasse is to assume (claim) that all forces perpendicular to
the velocity of a moving system, when ‘seen’ from a system at
rest, are increased by the γ-factor. This assumption is necessary,
since a charge subjected to an electric field, but balanced by an-
other force, for example gravitation, would loose its equilibrium
when observed from a moving system, if the gravitational force
would not transform like the electric field. This is a far reach-
ing consequence following from (7) and (8). In the following
Section we check, whether the transformation law (8) is com-
patible with the known transformation law of the inertial force,
by calculating the accelerated motion of a charged particle in an
electrostatic field.

III Motion of a charged particle in an electrostatic
field

Let us assume that a uniform electric field is produced by a
large plate condenser. At time t = 0 an electric particle moves
between the plates with velocity v in negative x-direction as
shown in Figure 1. Inserting (7) into the relativistic equation of
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Figure 1: Charged particle moving in an electric field

motion of the particle we have:

d

dt
(mvx) = 0 ,

d

dt
(mvz) = q Ez , m =

m0 c√
c2 − v2

x − v2
z

(9)

Adopting the initial conditions vx (0) = −v, vz (0) = 0 one
obtains for the velocity components:

vx = − v√
1 + τ 2

, vz =
c τ√

1 + τ 2
, τ =

q Ez
γ m0 c

t (10)

From dx/dt = vx , dz/dt = vz the trajectory of the particle can
be calculated by further integration of (10).

In the inertial system where the particle is at rest initially,
the equation of motion becomes with (7):

d

dt′
(m′ v′x) = −q v′z B′y ,

d

dt′
(m′ v′z) = q

(
E ′z + v′xB

′
y

)

m′ =
m0 c√

c2 − v′2x − v′2z
(11)
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Substituting the field transformation law (8) and integrating
over t′ yields for the momentum components of the particle:

m′ v′x =
γ q v

c2
Ez (z′ − z′0) , m′ v′z = γ q Ez

(
t′ − v x′

c2

)
(12)

where the initial conditions v′x (0) = v′z (0) = 0 , z′ (0) = z′0 ,
x′ (0) = 0 were chosen. Since we have t = γ (t′ − v x′/c2) ac-
cording to the Lorentz transformation, the particle gains in both
systems the same amount of momentum in z-direction. The mo-
mentum gain in x-direction is, however, different: It vanishes in
the unprimed system according to (9), but it is finite in the
primed system according to the first equation of (12). This is
only possible, when there is a reaction force on the plate con-
denser acting in negative x-direction.

The force density exerted by the particle on the plates is
according to (5):

~f = ρ′ ~Ep + ρ′
(
~v × ~Bp

)
(13)

where the fields produced by the moving particle are given by
the expressions:

~Ep =
q

4π ε0

~x ′ − ~x0
′

|~x ′ − ~x0
′ |3

, ~Bp =
1

c2

(
~vp × ~Ep

)
(14)

The total force in z-direction integrated over the volume of the
plates becomes:

Fz =
q σ′

4 π ε0

∞∫

0



(

1− v v′x
c2

)
z′ − z′0(

r2 + (z′ − z′0)2) 3
2



−h

h

2π r dr

= −q σ
′

ε0

(
1− v v′x

c2

)
= −q γ Ez

(
1− v v′x

c2

)
(15)
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where 2 h is the distance between the plates and equation (19)
below was used. Integration over t′ yields exactly the same nega-
tive momentum in z-direction as given by the second equation of
(12), so that Newton’s third law is satisfied for the z-component
of the force.

In x-direction the force density is according to (13):

fx =
q ρ′

4 π ε0

x′ − x′0
|~x− ~x ′|3

(16)

Integrated over the volume of the plates, this expression van-
ishes. Hence, the momentum gain as described by the first equa-
tion of (12) remains unbalanced. We must conclude then that
the momentum of the total system: particle plus condenser is
not conserved, when it is calculated in the primed system by
adopting the transformation law (8).

There is a further problem, when Maxwell’s equations are
transformed into a moving system. In addition to the trans-
formation rules (8), one must postulate that the charge density
transforms according to the rule:

ρ′ = γ ρ (17)

in order to ensure that Maxwell’s equations are Lorentz-invariant
in the moving system. In case of a large condenser as in Figure
1, the electric field is related to the surface charge density by
the simple formula following from (1):

Ez = σ/ε0 , σ =

∫
ρ dz (18)

This is also so in the rest-system of the charge:

E ′z = σ′/ε0 = γ σ/ε0 (19)
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in agreement with (8) and (17). For a condenser with finite di-
mensions, however, one finds a different electric field depending
on whether it is calculated from the transformation rules (8), or
directly from Maxwell’s equation (1) using (17).

Let us assume that the plates of the condenser in Figure 1
are of circular shape with radius a. The potential produced by
the lower plate is then in polar coordinates:

φ =
1

4 π ε0

2π∫

0

a∫

0

σ ri dri dϕi
R

(20)

R2 = r2 + r2
i − 2 r ri cos (ϕ− ϕi) + (z + h)2

The electric field in z-direction is Ez = −∂φ/∂z and becomes in
the rest-frame of the particle:

E ′z =
γ

4 π ε0

2π∫

0

a∫

0

σ (z + h) ri dri dϕi
R3

(21)

according to the field transformation (8).
The potential calculated in the rest-frame of the charge is in

Cartesian coordinates, because of (17):

φ =
1

4 π ε0

∫ ∫
σ γ dx′i dy

′
i(

(x′ − x′i)2 + (y′ − y′i)2 + (z′ − z′i)2) 1
2

(22)

=
1

4 π ε0

∫ ∫
σ dxi dyi

(
(x− xi)2 (1− β2) + (y − yi)2 + (z − zi)2) 1

2

where Lorentz-contraction in x-direction was taken into account.
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Employing polar coordinates the electric field becomes:

E ′z =
1

4 π ε0

2π∫

0

a∫

0

σ (z + h) ri dri dϕi
(
R2 − β2 (r cosϕ− ri cosϕi)

2) 3
2

(23)

Comparison with (21) shows that the denominator in (23) is
different so that the two expressions yield different fields. This
is already obvious by noting that (21) is axially symmetric, but
(23) is not.

IV Motion of a charged particle in a magnetostatic
field

In the previous Section it was shown that Einstein’s method
of transforming the electric field leads to ambiguous results. In
the following it will be shown that it fails also to replace a mag-
netostatic field by an electric field.

As long as a particle moves with constant velocity, one can
always define a coordinate system which moves with the particle,
so that the magnetic force in (7) vanishes. Since the force acting
on the particle cannot depend on the choice of the coordinate
system up to a γ-factor, the ~v × ~B term must be replaced by
an electric field in the framework of the Lorentz force. If the
magnetic field is produced by a neutral current, the particle
must ‘see’ an apparent charge density on the conductor, which
produces an electrostatic field acting on the particle, instead
of the magnetic field. In the relativistic formalism the charge
density appearing on a neutral conductor for a moving observer
is:

ρ =
γ~j · ~v
c2

(24)
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Figure 2: Charged particle moving in a magnetic field

Feynman [9] demonstrates for a straight wire, which carries a
constant current, that the charge density (24) yields indeed an
electric field which is the same as that which can be obtained by
transforming the magnetic field into an electric field with (8).
A general proof for the validity of the method is, however, not
given.

Let us assume that a magnetic field is produced by a circular
current loop of very small cross section as shown in Figure 2.
An electric particle moves with constant velocity v in negative
x-direction. The force components on the particle are according
to (7):

Fx = 0 , Fy = q v Bz , Fz = −q v By (25)
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The magnetic field may be derived from the vector potential of
the current loop with radius a:

Aϕ =
µ0 I

4 π

2π∫

0

a cosα dα

(r2 + a2 − 2 r a cosα+ z2)
1
2

(26)

which yields the field components from ~B = rot ~A :

By = −y
r

∂Aϕ
∂z

, Bz =
1

r

∂ (r Aϕ)

∂r
(27)

In the rest-frame of the moving particle a charge density arises
according to (24):

ρ =
γ v

c2
jx = −γ v

c2
jϕ sinϕ (28)

which produces an electrostatic potential:

φ =
v

4 π ε0 c2

∫ ∫ ∫
jx dx

′ dy′ dz′

(
(x− x′)2 + (y − y′)2 + (z − z′)2) 1

2

= −µ0 v I

4 π

2π∫

0

a sinϕ′ dϕ′

(r2 + a2 − 2 r a cos (ϕ− ϕ′) + z2)
1
2

= −µ0 v I

4 π

2π∫

0

a (sinϕ cosα + cosϕ sinα) dα

(r2 + a2 − 2 r a cosα + z2)
1
2

(29)

Here it was assumed that Lorentz-contraction does not play a
role (β2 � 1), in order to facilitate the calculation. For β ∼
1 one encounters a similar discrepancy as between equations
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(21) and (23) in the previous Section, because of the elliptical
deformation of the current ring. Since the uneven term in (29)
vanishes upon integration over α, the integrals in (26) and (29)
are the same and may be denoted by S:

S (x, y, z) =

2π∫

0

a cosα dα

(r2 + a2 − 2 r a cosα + z2)
1
2

, r2 = x2 + y2

(30)

The force on the particle in the moving system is ~F = −q∇φ.
Comparing now the force components as given by (25 - 27) with
the gradient force derived from (29) one obtains with (30):

0 = C
∂

∂x

(
y S

r

)
, C

1

r

∂ (r S)

∂r
= C

∂

∂y

(
y S

r

)

C
y

r

∂ S

∂z
= C

∂

∂z

(
y S

r

)
, C =

q v µ0 I

4 π
(31)

Only the z-components of the magnetic force and the electric
force in (31) are equal, but neither the x- nor the y-components
agree. It turns out that the cross product in (7) cannot be
replaced by a gradient, in general.

This result is quite understandable from the structure of the
~v × ~B term. When a particle moves in a magnetic field, its
kinetic energy is not changed, since the magnetic force is per-
pendicular to the velocity. Replacing the magnetic force by an
electric gradient-force means, that the energy of the particle is
now a function of its position in the scalar potential field, which
is produced by the apparent charge. Hence, the initial energy
will change, when the particle moves under the influence of the
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electric force. This is not the case, when the particle is only
subjected to a magnetic field.

In the above analysis only an electric gradient field was con-
sidered to replace the magnetic force. The reason was that the
rotational part of the electric field vanishes, when we assume
that the current in the ring is kept constant. One could argue
that a particle travelling in a vector potential, which is constant
in time, but non-uniform in space, experiences a time variation
of the vector potential due to the motion. With ~E = −∂ ~A/∂t
a force on the particle should then arise. This is, however, not
the case: If a particle travels outside an infinitely long solenoid
in the region where the magnetic field vanishes, but the vector
potential is finite, the particle is not deflected, unless the mag-
netic field inside the solenoid changes in time. For reasons of
symmetry one would not expect that the particle experiences a
force, in case it is at rest and the solenoid moves. This is why the
∂ ~A/∂t term was ignored when comparing the forces in equation
(31).

If one adopts, nevertheless, the full expression ~E = −∇φ −
∂ ~A/∂t for the electric field in the case of Figure 2, when the
particle is at rest, but the current ring moves, one obtains for
the force components:

q Ex = −C sinϕ cosϕ
S

r
, q Ey = C

(
∂S

∂r
+ cos2 ϕ

S

r

)
(32)

This is still not the same as the magnetic force components given

by the cross product q
(
~v × ~B

)
.
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V Discussion and Conclusion

From the analysis in Sections III and IV it became obvi-
ous that a solution of ‘Maxwell’s equations for matter at rest’
cannot be made into a solution for moving matter by apply-
ing the Lorentz transformation, in order to obtain the fields
in a moving system. It is questionable anyway, whether this
method would work when the velocity varies in space and time,
since the Lorentz transformation is restricted to constant mo-
tion. Einstein thought [6], nevertheless, that the field trans-
formation rules (8) have general validity, but this was just a
speculation which was not based on experiments. In a recent
paper [10] by the present author, it was shown that the Lorentz
transformation applied to electromagnetic waves predicts certain
optical phenomena, which are not supported by experiments1.
It is, therefore, not surprising that it fails also, when applied to
Maxwell’s first order equations.

The result in Section IV points to a serious problem which
arises in classical electrodynamics, independent of the relativis-
tic formalism. The Lorentz force requires to find an electric force
which replaces the magnetic force in a system moving with the
particle. It was shown that the required electric field cannot
be obtained, in general, from ‘Maxwell’s equations for matter
at rest’, at least not when the ‘apparent’ charge density (24) is
used. From energetic considerations we even concluded that it is

1In a recent experiment [11] it was found that the time dilation factor is,
in fact, absent, when microwaves are received by an antenna which moves
perpendicular to the wave vector. This is in agreement with equation (21)
in Reference [10], but in disagreement with the prediction of the Lorentz
transformation.
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not possible, in principle, to substitute the cross-product ~v × ~B
by a gradient field derived from a potential. Thus, either the
Lorentz force, or the field equations, or both must be suitably
modified to account for the force on a particle in its rest-frame.
It is, of course, well known that the Lorentz force must be mod-
ified anyway to include the effect of radiation damping, when a
charge produces electromagnetic waves due to strong accelera-
tion. Whether a modification of the Lorentz force alone leaves
equations (1 - 4) intact, is an open question. In 1890 Hertz [2]
was aware of the fact that the final forms of the forces are not
yet found. In case the open problems could not be solved, he
was not even certain that Faraday’s and Maxwell’s field concept
is viable at all.

Having shown that the transformation of the electromagnetic
fields, as proposed by special relativity, is not a feasible concept
to establish an ‘electrodynamics for moving matter’, it is obvi-
ous that the work started by Lorentz [8] and Hertz [3] should
be taken up again, both theoretically and experimentally. It re-
mains to be seen to what extent classical electrodynamics will
require a basic revision.
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