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1. Introduction. 
In the Relativistic Space-Time Domain D0, Pseudo-Euclidean Space-
Time, it was shown in [2] that an artificially applied accelerative force 
can be resolved into two spatial and two temporal forces, all of which 
produce a reaction in the accelerated mass.  
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Similarly, it was shown that the kinetic energy induced in the 
accelerated matter resulted in the increase of mass from that at rest to 
that at the achieved spatial velocity, and this was referred to as energy 
mass.  

Finally, it was shown that the two spatial reaction terms resulting 
from the applied force, combine to produce a further apparent 
increase in mass of the accelerated matter, and this was equated to 
inertial mass. 

All of these concepts are examined here within the gravitational 
Relativistic Space-Time Domain D1. The examination is conducted 
for motion which is (i) purely gravitational, and, (ii) where the 
gravitational motion is augmented by an artificially applied force. 

Note that a term will only be defined in this paper if it has not 
previously been so in either [1] or [2] with which familiarity is 
assumed. 

2. The Spatial-Temporal Distribution of the 
Accelerative Force of Gravitational Motion. 
Similar to the case of forced motion in D0, the reaction forces 
induced in a gravitationally accelerated mass in D1 can be seen from 
[1] Eq.(3.2), to consist of four components. The analysis of these 
terms can be simplified, without any loss of generality, by considering 
simple rectilinear motion only, and the rectilinear version of [1] 
Eq.(3.2) can be obtained by putting ω to zero, to obtain 
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where gF  represents the internally generated accelerative force of 
gravitation and all other terms are as defined in [1]. 

Clearly, (2.1) contains four reaction terms, two spatial and two 
temporal and, in the same manner as in [2] Fig. (3.1), these reaction 
forces can be expressed in relation to the Existence Velocity Vector 
of the gravitating mass as shown in Fig. 2.1 below 

where in Fig. 2.1, eF  represents the component of gF  along the 
Existence Velocity Vector of the gravitating mass and aF  the 
component transverse to it. 

From (2.1) and Fig. (2.1) it is clear that  
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Fig. 2.1 – Components of Fg with Respect to V . 
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and aF  therefore relates the energy mass to the time rate of change of 
the Existence Velocity Vector.  

Similarly 
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and thus eF  relates the Existence Velocity Vector to the time rate of 
change of energy mass. 

From (2.2) and (2.3), following the same process as in [2], the 
balanced force vector diagram for gravitational rectilinear motion can 
be established as in Fig. 2.2 below 

Accordingly, as in [2], the four reaction terms can be defined as 
follows 

(i) The spatial term σ&&m is the reaction force of the energy mass to 
spatial acceleration. 
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Fig. 2.2 – Balanced Force Vector Diagram for Rectilinear Gravitational 
Motion. 
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(ii) The temporal term 
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 is the reaction force 

of the energy mass to temporal deceleration. 

(iii) The temporal term ( ) 2
1

222 σ− && ucm  is a reaction force 
generated by the combination of energy mass rate and temporal 
velocity and acts in opposition to the term in (ii). 

(iv) The spatial term σ&&m  is a reaction force generated by the 
combination of energy mass rate and the spatial velocity and acts as 
an additional reaction to spatial acceleration. 

The above results are very similar to those obtained in [2] for the 
analysis of forced motion in D0. However, there is one very 
significant difference. This is the manner in which the motion is 
driven. In D0 it is due to the application of an external force to 
produce an acceleration proportional to the applied force and the 
inertial mass of the accelerated body. In D1 the motion is driven by 
the action of the Acceleration Potential of D1 on the gravitating mass, 
to produce an internally generated accelerative force proportional to 
the energy mass of the gravitating body. This difference has important 
implications concerning the mass and energy of the gravitating mass 
which are analysed in depth in the following Section. 

It is also noted that, as in D0, the temporal terms are equal in 
magnitude but opposite in sign and therefore cancel. This is 
confirmed by additional analysis in the next Section. 
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3. An Analysis of Mass in D1. 

3.1 Gravitational Mass. 
It was shown in [2] that in D0 the force applied to accelerate a mass 
produced two spatial reaction terms similar to (i) and (iv) in Section 2 
above. It was also shown that the combination of these terms resulted 
in the generation of inertial mass. Determination of whether the same 
effect is present in D1 for purely gravitational motion, is most easily 
accomplished by initially evaluating the four terms derived in Section 
2 in terms of the function u, and suitably chosen initial conditions. 
These conditions, for gravitationally induced rectilinear motion, are 
defined as the value of u at the location that motion starts, u0, and the 
value of the energy mass, represented by m0, at the same location. 

First, the term (i) in Section 2 above. From [1] Eq. (4.3), for 
gravitational rectilinear motion, σ&&  is given by 
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Also from [1] Eq.(B4), by putting ω0 = 0 
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Substitution of (3.2) into (3.1) then gives 
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From [1] Eq. (3.19), energy mass is given by 
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Thus from (3.3) and (3.4) for the first spatial reaction term (i) in 
Section 2 above 
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Next, for the second spatial reaction term, (iv), in Section 2, from 
(3.4) 
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which with insertion of (3.2) becomes 

 
σ








−−=

d
du

u
u

u
u

cmm
2

1

2
0

2

2

2
0

0 12&  (3.7) 

and thus the combination of (3.2) and (3.7) gives for the second 
spatial reaction term 
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Eqs.(3.5) and (3.8) may now be summed to give the total spatial 
reaction to gravitationally induced rectilinear motion thus 
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which from (3.4) finally reduces to  
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as derived in [1] Eq.(3.16). 
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Prior to a discussion of this result, the temporal terms (ii) and (iii) 
in Section 2 are compared to re-confirm the purely spatial nature of 
gravitation. 

From (3.2) and (3.7) 
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and from (3.1), (3.2) and (3.4) 
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thereby confirming that these terms are equal in magnitude but 
opposite in sign and therefore cancel. 

The above result, (3.10), shows that what in the literature has been 
termed “gravitational” mass, is equivalent to energy mass as defined 
in this series of papers. It also thereby shows that in the Relativistic 
Space-Time Domain D1, this mass bears no relationship to the 
inertial mass of D0, Pseudo-Euclidean Space-Time. i.e. compare 
(3.4) with [2] Eq.(3.9). However, this comparison is perhaps an 
unrealistic one in that it is across Domains. A more realistic 
comparison is that of the gravitational mass of D1 with true inertial 
mass within the same Domain. To do this it is necessary to analyse 
the effect of the application of an artificially applied force to a mass in 
D1. Such an analysis must however also take account of the 
gravitational effect that is still present.  

3.2 Inertial Mass in D1 

Prior to conducting this analysis it is useful to simplify (2.1) as it will 
thereby in turn simplify the ensuing development. Because the 



 Apeiron, Vol. 11, No. 1, January 2004 195 

© 2004 C. Roy Keys Inc. — http://redshift.vif.com 

gravitational effect is purely spatial, the temporal component of (2.1) 
is zero, so that from this component 
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which for an initially stationary mass integrates to 
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and which via (3.2) can be shown to be equal to (3.4). 
Substitution of (3.13) into (2.1) then gives 
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This can also be obtained by putting ω = 0 in [1], Eq(3.9). 
To conduct the analysis of forced motion in D1, assume now that 

an artificial force F is applied in opposition to the gravitational effect 
to a stationary, free mass point. As rectilinear motion only is being 
considered, the vector notation is dropped. The rate of change of 
spatial momentum of this mass will then be from (3.15),  
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Solving this for σ&&  yields 
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which is clearly seen to be the total acceleration of gravitation 
augmented by an accelerative term due to the application of the 
artificial force F. The mass term associated with this force is the true 
inertial mass of the Domain D1, which becomes, with the insertion of 
(3.14) for the energy mass 
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Here it is clear that (3.18) possesses the same form as the inertial mass 
of Pseudo-Euclidean Space-Time, [2], Eq.(3.9), but with the presence 
of the additional multiplicative term u0/u. This extra term appears 
because the motion is taking place through the varying temporal rate 
generated by the gravitational source. 

From the above results it is clear that a hitherto basic belief of 
gravitational theory, the equivalence of gravitational and inertial 
mass, does not apply in D1. These two mass terms cannot be equated. 
Gravitational mass is, due to the nature of the generation of the 
accelerative force, equivalent to energy mass and for accelerative 
motion due solely to gravitation, inertial mass does not exist. This is 
an important result which will be discussed in detail later in this 
paper. 

It is easy to derive the initial acceleration, (at τ = 0 and σ = σ0), 
from (3.17) by putting 0=σ& , i.e. 
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Also, it is noted that if in (3.17) F is such as to prevent 
gravitational motion, then both σ&  and σ&&  may be put to zero and 
(3.17) reduces to  
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as derived in [1] Eq.(3.23), for the weight of the mass at some 
arbitrary distance σ1 from the centre of the gravitational source. 

Finally, it can be seen from (3.17) that a further steady state 
solution exists, that for when 0=σ&& . Inserting this condition into 
(3.17) and solving for σ&  yields 
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From (3.21) it can be seen that if 22umcF /  is very much larger than 
the gravitational term, the velocity approaches the terminal velocity of 
the Domain. In this respect this condition is the same as in Do. 
However, if F is very small compared to the gravitational term, (3.21) 
reduces to 
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cu
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which shows that within D1 the maximum velocity that can be 
achieved in solely gravitational induced motion, is very much less 
than the terminal velocity. The reason is that the positive acceleration, 
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proportional to the square of the velocity of the motion through the 
reducing temporal rate, (see (3.1)), eventually reaches a level that 
exactly balances the negative acceleration produced by the 
Acceleration Potential of the Domain. 

4. Kinetic Energy of Gravitational Motion. 
It was shown in [2] that in D0, Pseudo-Euclidean Space-Time, the 
increase in the rest mass of an accelerated body to its energy mass at 
some spatial velocity, was due to the storage of kinetic energy 
generated by the externally applied force. 

It was also shown In [1] that in the gravitational Relativistic 
Domain D1, the increase in mass that occurs when a body is in 
motion under the sole influence of the gravitational source, was due 
exclusively to it’s motion through the varying temporal rate generated 
by the source. As there is no artificially applied accelerative force 
under this latter condition, the question arises as to the nature of 
kinetic energy of the gravitationally accelerated mass.  

In [1] it was shown that the total energy of the gravitating body 
remained constant throughout the entire time that the motion 
continued. This was stated in [1] as Eq.(3.15) and is repeated below 
for convenience 

 0=
σd

dE
 (4.1) 

The total energy of the body therefore remains exactly the same as it 
was at the instant before motion started, see [1], Eq.(3.20). There can 
only be one consequence of this - in purely gravitationally accelerated 
motion, kinetic energy does not exist. The sole reason for this is that 
the gravitationally applied acceleration generates a force within the 
body precisely proportional at all times to it’s energy mass, (see 
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(3.10) and the ensuing discussion). This force is not therefore the 
cause of the motion but the consequence of it, and does not result in a 
transference of energy in the form of increased mass. However, this is 
only true for purely gravitationally induced motion. When an external 
force is also applied, kinetic energy is generated in D1 as it is in D0. 
This is examined in the following Section. 

4.1 The Kinetic Energy Generated by an Externally 
Applied Force in D1. 
The kinetic energy generated in an accelerated body by an externally 
applied force may be developed directly from (3.17). Re-arranging 
(3.17) gives 
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Insertion of (3.14) and multiplying out gives 
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where 
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and substitution of (4.4) into (4.3) then gives after minor reduction 
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Kinetic energy is given by the integral of the applied force over the 
distance it acts so that 
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In (4.6) the term on the right hand side is an exact differential so that 
it can be integrated by inspection to be 
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If initial conditions are such that at the point of application of the 
accelerating force, 0=σ& , Ek = 0 and of course u = u0, then 
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which from (3.14) becomes 
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and the kinetic energy is clearly the difference between the total 
energy of the mass at the point of observation and, at the point at 
which motion started. This is exactly the same as in D0, e.g. putting 
u = u0 = 1 reduces (4.11) to the kinetic energy of D0, Pseudo-
Euclidean Space-Time. 

Also note that (4.11) can be re-arranged to show that 
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which therefore shows that the energy mass under this condition is 
now made up of the original mass at the location that motion started, 
translated to the point of observation via the square of the ratio of the 
respective temporal rates, i.e. the gravitational variation of mass, plus 
an element due to the storage of kinetic energy imparted to the mass 
by the action of the artificial accelerative force F. Again this latter 
effect is the same as in D0. 

4.2 Dissipation of Energy when Bringing a Gravitating 
Mass to Rest. 
In view of the result that gravitationally induced motion does not 
involve a gravitating mass accumulating kinetic energy, it is 
necessary to explain the apparent dissipation of energy when a 
gravitating mass is brought to rest. 

The gravitationally accelerated motion that exists within the 
Relativistic Space-Time Domain D1, is the natural state of existence 
within that Domain and, for a gravitating body does not involve an 
exchange of energy. To bring a gravitationally accelerated mass to 
rest requires the application of an artificially generated opposing 
force. The energy dissipation that takes place during this process 
occurs due to two causes. First, and most obvious is that the 
generation of the artificial force can only be effected by some 



 Apeiron, Vol. 11, No. 1, January 2004 202 

© 2004 C. Roy Keys Inc. — http://redshift.vif.com 

mechanical, electrical, chemical or nuclear process. All of these 
require the dissipation of energy to achieve the objective. However, 
there is a second more important cause. Because the gravitationally 
accelerated state of the body is its natural state of existence in D1, 
bringing it to rest via the application of an external force is causing it 
to decelerate against this natural state of existence. This has the 
opposite effect to that in the previous example, it extracts energy from 
the gravitating body by reducing its mass. This process can be 
demonstrated as follows. 

Assume that σ1 is the point of application of the decelerative force 
F, at which the initial conditions are u = u1, m = m1, 1σ−=σ && and 
Ek = 0 by virtue of (4.1). Under these conditions, the solution to (3.13) 
is, with the non zero initial velocity  
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and with this the solution to (4.2) becomes 
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Inserting the initial conditions in (4.14) determines k to be  
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and thus 
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which from (4.13) is 

 2
1
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22 ucmumcEk −=  (4.17) 

This appears to be of the same form as in the previous example for 
accelerating a body against gravitation, (4.11). However, consider 
(4.16) after the mass has been brought to rest. Then 0=σ&  and thus  
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If the prior motion due to gravitation started at a position σ0 where 
u = u0 and m = m0 then from (3.2) and (3.4) 
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Inserting (4.19) into (4.18) then gives 
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because, in this case, 
0u

u
 < 1 then Ek < 0 , i.e. the mass loses energy 

during deceleration. This loss occurs as follows, from (4.17) and the 
first part of (4.19) 
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and because Ek < 0 the mass of the body at the point where it has 
been brought to rest is less than it would have been had it been 
allowed to continue gravitating. The loss of energy through this 
process is therefore effected by a reduction in the mass of the 
decelerated body and this energy loss is absorbed in both the arresting 
and gravitating bodies as a mechanical deformation. The mass loss 
can be determined by equating (4.17) and (4.20). This gives 

 
u
u

mm 0
0=  (4.22) 

and, if the mass had been allowed to continue gravitating to the point 
of observation its mass would have been given by (3.4). The mass 
loss is therefore the difference of (4.22) and (3.4) thus 

 
u
u

u
u

mm 00
0 1 








−=∆  (4.23) 

which clearly must be negative. Note that (4.21) is identical in form to 
(4.12) and that, it is also clear that (3.18) must apply in this case in 
that the apparent mass under deceleration must be the inertial mass of 
the decelerated body. 

5. Concluding Remarks. 
The Spatial-Temporal Distribution of the Accelerative Force of 
Gravitation. 
It has been shown that the accelerative force generated within a 
gravitating mass takes the same spatial-temporal configuration as an 
externally applied force in D0. If the usual approximation, (u = 1), is 
applied to the four spatial-temporal terms derived in Section 2, they 
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all reduce to the corresponding terms of D0. A result which is entirely 
in keeping with the relationship between the basic Relativistic Space-
Time Domain D0 and the gravitational Domain D1, (see Appendix 
B). 
Gravitational and Inertial Mass. 
It has long been a fundamental belief that gravitational and inertial 
mass are identical. The literature contains many references to this 
belief and it is frequently used as a starting point in the construction of 
the theory of gravitation as represented by the General Theory. 
Reference [3], pp167-168 contains a proposed proof of this equality. 
On the other hand the development in Section 3 of this paper clearly 
shows that within the Domain D1, gravitational and inertial mass are 
not the same. This represents a fundamental difference between the 
theory of gravitation as represented by the General Theory of 
Relativity and the gravitational theory of D1 presented in this series 
of papers. The reason for this difference is that the mass involved in 
the gravitation of D1 is the energy mass of the gravitating body and 
not it’s inertial mass, a result which is considered more equitable with 
Galileo’s law because energy mass is a real parameter of the body 
which exists under all states whereas inertial mass is an artefact of 
only the artificially accelerated state. This inequality is however, 
problematical because it infers that the proof in [3] is flawed. This 
point is so important that this proof is discussed in some detail in 
Appendix A. 
Kinetic Energy. 
In a similar vein to the above it has long been believed that a 
gravitating mass accumulates kinetic energy as it’s motion increases. 
This paper has shown that this also does not apply within D1 as there 
is no energy exchange involved in the gravitational motion of such a 
mass. It is this singular point which defines the gravitational motion 
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of D1 to be the natural state of existence within the Domain, exactly 
as the natural state of existence in D0, is to be spatially at rest. To 
promulgate both inertial mass and kinetic energy in D1 requires the 
application of an artificially generated force which then parallels these 
effects in D0. 

The overriding conclusion therefore is that gravitationally induced 
motion in D1, is unique by virtue of the manner in which the 
accelerative force is induced within the fabric of the gravitating body. 
It is a force generated via the interaction of energy mass and a space-
time Acceleration Potential. Further understanding of gravitation 
requires therefore that the manner in which a gravitational source 
generates its Acceleration Potential and causes time dilatation must be 
understood. A new mechanism for this process is to be presented in 
the next paper. 

APPENDIX A - A Critique of the Equality of 
Gravitational and Inertial Mass as Proposed in 
the General Theory of Relativity. 
This paper has shown that within the Relativistic Space-Time Domain 
D1 inertial and gravitational mass cannot be considered to be the 
same. However, the equality of inertial and gravitational mass has 
been stated in the literature to be fundamentally important to the 
theory of gravitation as represented by the General Theory. An 
examination of a proposed proof is therefore necessary. The proof 
presented in [3] is therefore reviewed below.  

To perform this critique it is first necessary to establish an 
adequate definition of both parameters. This is best done by repeating 
the definitions found in [3]. 
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“Inertial mass is the measure of the ability of a body to resist 
acceleration. For a given force the acceleration is inversely 
proportional to the inertial mass.” 

“Gravitational mass is the measure of the ability of a body to 
produce a gravitational field and to suffer the action of such a field. In 
a given field the force experienced by a body is proportional to the 
gravitational mass.” 

With regard to the latter definition, no opinion is made at this point 
on the first part of this definition, i.e. that concerning the ability of a 
body to produce a gravitational field. This critique is only concerned 
with the latter part of the definition. 

The proposed proof of the equality of these two definitions is then 
developed in [3] as follows, (the nomenclature used here is as per the 
Reference). 

Via the assertion that a gravitational field can be defined by a 
Newtonian Potential, the force experienced by a gravitating mass is 
then stated to be 

 gradUmF gr=  (A1) 

where U is the Newtonian Potential, (γM/r), and mgr the gravitational 
mass of the gravitating body. 

Using Newton’s laws of motion it is also stated that 

 wmF in=  (A2) 

where w  is the acceleration and min the inertial mass. 
The forces in (A1) and (A2) are then assumed to be equal so that it 

is then stated that 
 gradUmwm grin =  (A3) 

and from this, Galileo’s law is used to equate min and mgr. 
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The use of (A2) involves an assumption that has not been stated. 
That assumption is that Newton’s laws of motion are applicable to 
gravitationally induced motion in exactly the same manner as they are 
in artificially produced motion. This assumption concerns the manner 
in which each force is applied. Because the gravitational effect is a 
field effect, the force involved in the motion is, as has been stated 
before, generated within the body and effects each and every atom 
simultaneously and equally. The only stress on the molecular and 
atomic bonds of the material is due to the very small differences in 
position of each atom within the field. This is considered to be the 
only way that the force generated can be proportional to the energy, 
(or gravitational), mass of the body. 

On the other hand, in artificially produced motion the force is 
applied over an area of surface contact. It is transmitted to the rest of 
the fabric of the body through its molecular and atomic bonds. The 
law that governs this latter type of motion was developed using 
mechanical experimentation in which the test force was applied in just 
this way. Both constant and variable forces may have been used but 
the inertial mass of the test body would have remained a function of 
its rest mass and acquired velocity. Although the experiments were 
conducted with great accuracy they would not have been able to 
distinguish between the various mass values that are applicable in 
such experiments, i.e. rest, energy and inertial mass. Consequently, 
the law as originally constructed would only have referred to the mass 
of the body without any defining parameter. However, since its 
discovery, (A2) has been theoretically confirmed as correct for 
artificially induced motion, i.e. as in [2]. The same however, cannot 
be said for purely gravitationally induced motion. Once again, despite 
the accuracy and precision with which the mechanical experiments to 
study gravity were performed, they would not have been able to 
distinguish between the mass values involved and, would have 
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resulted in the same conclusion regarding the laws of gravitational 
motion, as for artificial. However, a theoretical or otherwise proof of 
the applicability of (A2) to gravitational motion, has not since been 
produced. It is therefore considered questionable whether the use of 
(A2) is valid in the derivation of a proof of the equality of inertial and 
gravitational mass, especially where the variability of the parameters 
concerned is on a relativistic level. 

APPENDIX B - Reduction of Selected Relativistic 
Gravitational Expressions to their Classical 
Equivalents 
This exercise is only affected for those expressions not previously so 
treated in [1]. Note that to reduce these equations to their Special 
Relativistic equivalents, it is only necessary to put u = 1. Subsequent 
reduction to the classical equivalents is achieved by putting c = ∞. 
Note also from [1] Eq(G1) when u = 1, α? = 0 and therefore σ = r. 
In Section 2. 
The four spatial/temporal reaction forces, 
(i) The spatial term 

 rmm u &&&& =σ =1  B1) 

(ii) The temporal term 
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(iii) The temporal term 
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(iv) The spatial term 

 dt
dmrm u &&& =σ =1  (B4) 

All of the above reduced expressions are as the Special Relativity 
equivalents as derived in [2] Section 3. 
In Section 3. 
(v) Eq(3.18), Inertial mass in D1 

(a) To the special relativistic equivalent, putting u = u0 = 1 
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(b) To the classical equivalent, in (B5) putting c = ∞. 
 0mmma ==  (B6) 

(iv) Eq(3.17) artificially induced acceleration in D1 
(a) To the special relativistic equivalent, putting u = 1. 
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where [2], Eq(3.6) has been subsequently inserted for m. 
(b) To the classical equivalent, in (B7) putting c = ∞. 
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(vii) Eq(4.16), loss of energy by a gravitating mass when brought to 
rest. From (B6) m1 = m0 so that (4.16) becomes 
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and after the mass has been brought to rest 
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This is a negative quantity and exactly the kinetic energy that would 
have been lost by the mass had it been decelerated to stop from the 
velocity 1r&  in D0, Pseudo-Euclidean Space-Time. 
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