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The Bernoulli Map is analyzed with an ultrametric approach, 
showing the adequacy of the non-Archimedean metric to 
describe in a simple and direct way the chaotic properties of 
this map. Lyapunov exponent and Kolmogorov entropy appear 
to yield a better understanding. In this way, a p-adic time 
emerges as a natural consequence of the ultrametric properties 
of the map. 
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Introduction 
Time is, perhaps, the most primary notion for all of us. Nevertheless 
(and maybe because of that) its properties, and specially its metric 
properties, have not been exhaustively analyzed. Contrary to the 
metric properties of the space and even of the space-time, where a 
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profusion of research has appeared, there is a void in the metric 
description concerning time. In our opinion, ultrametricity concepts 
open a path to this description, and we try to illustrate it by studying 
the ultrametric properties of time in the case of the Bernoulli map. 

In ultrametric spaces, concepts such as exponential separation of 
neighboring trajectories, and characteristic parameters (Lyapunov 
exponents and Kolmogorov entropy) seem to yield a simpler 
understanding than the Euclidean metric. 

In the last years, ultrametricity has triggered interest in a wide 
range of physical phenomena, due to its applications in different 
fields: spin glasses, mean field theory, turbulence, and nuclear 
physics. Also optimization theory, evolution, taxonomy, and protein 
folding benefit from it (for an excellent review see [1]). Wherever a 
hierarchical concept appears, non-Archimedean analysis is an 
adequate tool to study the problem. 

As an example where Euclidean metric is not very adequate, let us 
consider Baker's map [4]. The interval ]1,0[]1,0[ ×  is mapped into 

]1,0[]1,0[ × . Therefore, the distance between two points cannot be 
larger than the distance between two opposite corners in ]1,0[]1,0[ × . 

Nonetheless, Baker's map has a Lyapunov exponent greater than 
one. Thus, the distance between neighboring points grows 
exponentially in a finite region of the phase space. In the Euclidean 
space we would have to define the distance as the Euclidean length of 
the shortest path lying entirely within the region. Ultrametricity is a 
promising tool in the theory of branching processes, which, at the 
same time, has shown promise in the study of self-organized critical 
processes where a branching representation can be introduced [2,3]. It 
seems possible to find simpler tools to describe the geometry of these 
processes. 
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Here, we illustrate the advantages of a hierarchical representation 
in the case of the Bernoulli shift. This will enable us, using simple 
geometric considerations, to determine the magnitudes governing the 
system, and the advantages of a p-adic metric will be stressed over the 
Euclidean metric. The ultrametric distance will be shown to be 
consistent with the characteristic behavior of this chaotic one-
dimensional map. 

In this paper we explore the application of ultrametricity in linking 
the Bernoulli map with a branching structure, which will reveal the 
possibilities of assigning an ultrametric measure to processes that, to 
all appearances, are not linked with a given metric (e.g., minority 
game and related problems) so that an adequate understanding of the 
ultrametric properties of a given process may lead to deeper 
understanding [5]. As any nontrivial norm is equivalent to the 
Euclidean or any of the p-adics (Ostrowski's theorem [1]), it would be 
convenient to measure the distance between points in Baker's map 
with a p-adic metric.  

Ultrametricity 
An ultrametric space is a space endowed with an ultrametric distance, 
defined as a distance satisfying the inequality 
 )},(),,({),( CBdBAdMaxCAd ≤  (1) 

(A, B and C are points of this ultrametric space), instead of the usual 
triangular inequality, characteristic of Euclidean geometry 
 ),(),(),( CBdBAdCAd +≤   (2) 

A metric space E is a space for which a distance function ),( yxd  is 
defined for any pair of elements (x,y) belonging to E. 

A norm satisfying 
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 { , }x y Max x y+ ≤  (3) 

is called a non-Archimedean metric, because equation (3) implies that 

 xxx ≤+  (4) 

holds, and equation (4) does not satisfy the Archimedes principle: 

 xxx ≥+  (5) 

A metric is called non-Archimedean or ultrametric, if (1) holds for 
any three points (x, y, z) 
 ( , ) { ( , ), ( , )}d x z Max d x y d y z≤  (6) 

A non-Archimedean norm induces a non-Archimedean metric: 

 ( , ) { ( , ), ( , )}d x z x z Max d x y d y z= − ≤  (7) 

It is known that equation (7) implies a lot of surprising facts, e.g., that 
all triangles are isosceles or equilateral and every point inside a ball is 
itself at the center of the ball, while the diameter of the ball is equal to 
its radius. 

An example of ultrametric distance is given by the p-adic distance, 
defined as  

 
pp yxyxd −=),(  (8) 

where the notation defines the p-adic absolute value:  

 r
p

px −≡   (9) 

where p is a fixed prime number, 0≠x  is any integer, and r is the 
highest power of p dividing x.  

Two numbers are p-adically closer as long as r is higher, such that 
pr divides yx − . Amazingly, for p = 5 the result is that 135 is closer 
to 10 than 35. 
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Any positive or negative integer can be represented by a sum 

 ∑
∞

=

=
0i

i
i pax  (10) 

where  
 10 −≤≤ pai  (11) 

If negative exponents are considered in the sum, rational numbers can 
also be represented. Such a representation is unique. The set of all 
sums Qp is the field of p-adic numbers, and contains the field of 
rational numbers Q but is different from it. 

Lyapunov exponent, Kolmogorov entropy and 
ultrametric time. 
With the above description the p-adic numbers have a hierarchical 
structure, whose natural representation is a tree. Let us now use this 
description to work with the Bernoulli map (See [4]): 

 
...2,1,0

1mod21

=
=+

n
xx nn  (12) 

Here, we may note that the numbers can be represented as a set of 
points in a straight line or by a hierarchical structure, depending on 
the definition of distance (Euclidean or Archimedean) as we will see 
below. 

Let us represent the initial value (state) to be mapped into the unit 
interval by the sequence ..........,0 1 Naa  with ia = 0 or 1 to denote the 
initial value in binary notation. 

It is possible to reorder these sequences as a hierarchical tree. To 
do this, let us perform the following process to represent the result of 
the application of the Bernoulli map: 
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We begin at an arbitrary point. We read, consecutively, the values 
of ia , from i = 1 to N, of the sequence ..........1 Naa . When ia  takes 
the value 0 we move to the left, and the same distance down. When 

ia  takes the value 1 we do the same, but moving to the right. The 

result is N2  branches of a hierarchical tree. Any finite path inside this 
branching structure represents univocally a possible finite sequence 

..........1 Naa  
Thus, for instance, the sequence 0,0110 represents: left, right, 

right, left. 
The distance ),( ji xxd  between two branches (sequences) ji xx ,  

in this tree is given by 

 
( )2

( , )
0

m n

i j

i j
d x x

i j

− → ≠
= 

→ =
 (13) 

where m is the number of levels one must move up the tree to find a 
common branch linking xi and xj, and N is the number of levels (the 
length of the sequence). This is equivalent to 

 
2

( , )
0

h

i j

i j
d x x

i j

− → ≠
= 

→ =
 (13a) 

where h is the position of the last block ah in which ai (i = 1,....,h) are 
common to the two sequences xi, xj. This means that the numbers xi 
and xj are near the hth binary place. This distance is ultrametric. 

To calculate the Lyapunov exponent it is necessary to know how 
neighboring points 0x ε+  and 0x  evolve during the Bernoulli map. If 

ε  be equal to 1 22 [1 2 2 ...] 2h Nδ δ− −− −+ + + > , then the first different 
position between 0 1 2 10, ... ...h Nx a a a a−=  and 0x ε+  is ah. 
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It is then is necessary to move up the tree N – h + 1 levels from the 
bottom line to find the common branch in the position ah–1 (obviously, 
the last common figure between x0 and 0x ε+ ). Thus, 

 ( 1)
0 0( , ) 2 hd x xε − ++ =  (14) 

and 

 1
0 0( ( ), ( )) 2n n h nd f x f xε − + ++ =  (15) 

because the iteration fn moves away the common branch n positions 
from the bottom level. 

To calculate the Lyapunov exponent it is necessary to express the 
exponential growth of the distance between two neighboring points: 

 0 00 0
lim lim 2 lim lim ( ( ), ( ))n n n

n n
d f x f xλ

ε ε
ε ε

→∞ → →∞ →
= +  (16) 

Since the base for measuring the p-adic distance in our space is the 
number 2, in the preceding equation we have expressed the 
exponential growth as 2 nλ  instead of neλ . 

Replacing ε  and 0 0( ( ), ( ))n nd f x f xε+  in the preceding equation 
we obtain 

 1 2 1lim lim 2 (1 2 2 ...)2 lim lim 2h n h n

n h n h

δ δ λ− −− − + +

→∞ →∞ →∞ →∞
+ + + =  (17) 

from (17) it can be easily observed that 1=λ . 
As the Lyapunov exponent in the Bernoulli map is ln 2 [4], we 

recover this result with p-adic metric, since ln22 e= . This means that 
each unit time interval implies a new doubling of branches in each 
node of the hierarchical tree. Once a unit time interval has elapsed, the 
number of levels one must move up the tree to find a common branch 
increases by one. This result will be crucial to understanding how 
information is lost in the course of time. 
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In one-dimensional maps like the one considered here, the 
Kolmogorov entropy coincides with the Lyapunov exponent [4]. The 
expression for the Kolmogorov entropy is: 

 
1 1

1

... 2 ...0
...

1
lim lim lg

n n

n

i i i in
i i

K p p
nτ τ→∞ →

= ∑   (18)  

where 
1... ni ip  is the probability to reach the in -th state of the system in 

the phase space following a given path i1i2…in. It can be seen that in 
our case this probability only depends on the final state in , because for 
each state there is just one path, i.e., that given by the sequence 
i1i2…in. Moreover, the number of states in the nth level is 2n, and τ is 
the time elapsed in passing from one state to the next. The probability 

of occupying one of the 2n states is 
1 2 ...

1
2nn i i i np p= = , and this results 

in 

 
0

2
lim lim

2nn
K

τ τ→∞ →
=  (19) 

But the distance between two successive states of the nth level is 
21–n, because they are common up to the (n – 1)th level. Since the 
speed v to pass from one sequence to the next is constant in the 

Bernoulli map, i.e., 
12

1
n

v
τ

−

= = , the time τ elapsed between these 

two successive states is n−= 12τ . As expected, k = 1, coinciding with 
the Lyapunov exponent. Hence, time has ultrametric properties in this 
process. Notice that the existence of a p-adic proper time is essential 
to the coincidence of the Kolmogorov entropy and the Lyapunov 
exponent. The spatial p-adic structure is unavoidably joined to the p-
adic structure of proper time. 
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Therefore, we can say that this problem possesses a p-adic spatial 
and temporal geometry instead of a sole p-adic spatial geometry. To 
see the importance of the introduction of a p-adic time, see [6]. 

The Kolmogorov entropy measures the loss of information in the 
process. This loss of information can easily be seen from our 
representation, since the process of separation of trajectories is such 
that for any step the increase of the distance between two points 
duplicates the number of branches through which this increment can 
be reached. We are loosing information because we do not know 
exactly the way we are separating two states. 

On the other hand, we can see that in the ultrametric space the 
natural time of the system is also ultrametric. The time of transition 
between two sequences xi, xj satisfies the same expression (13) as the 
distance between xi,xj. 

Furthermore, the subsequent behavior of two states that separate at 
a given point in the ultrametric space depends on the point at which 
separation occurs, revealing that ultrametricity can be applied to 
decision processes (like minority games, aging effects, hierarchical 
processes, etc.), where ultrametric concepts have been poorly applied. 
The application of ultrametricity to the minority game will be treated 
in future work. 

Conclusions 
It has been shown that the Bernoulli map leads to a hierarchical 
structure in the p-adic metric. In light of the ultrametric distance, the 
Lyapunov exponent and the Kolmogorov entropy can be better 
understood and a direct geometric interpretation is supplied by the 
hierarchical structure. The p-adic metric seems to be the natural 
metric of this map. The hierarchical structure generates p-adic 
properties for temporal evolution. 
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