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The present paper analyses the twin paradox as presented by 
Van Flandern [1] and confirms the results obtained by 
standard relativistic calculations. A variety of the twin paradox 
with symmetrical causal chains of events is considered, where 
the motional trajectories of two twins can be realized with 
some probability. It seems that such a probabilistic 
presentation of the twin paradox destroys a conception about 
equivalence of all inertial observers in SRT. The twin problem 
has been considered within Lorentz ether theory (LET). For 
better understanding of the observations of both twins, a 
mathematical apparatus of LET has been developed. It has 
been proved that LET postulates represent a direct 
consequence of the Galilean transformations in physical 
space-time under limited speed of light. 
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Fig. 1. Initial time instant: the journey of spacecraft twin is starting. 

1. Introduction 
Since the appearance of the special relativity theory (SRT), the twin 
paradox has been discussed in many papers and textbooks. One of the 
most interesting papers on the subject was recently published in 
Apeiron [1]. This publication prompts me to continue a discussion 
about this paradox. Section 2 analyses the problems to be found in [1] 
in more detail. Section 3 presents a variety of twin paradox, where the 
motional trajectories of two twins are not definite, but may be realized 
with some probability. Finally, Section 4 explains the twin paradox in 
LET, as well as in any other possible ether theory, which adopts a 
Galilean metric of absolute space. The subsection 4.1 develops a 
mathematical apparatus for LET. 

2. The Twin paradox as presented by Tom 
Van Flandern  

In ref. [1] the twin paradox was considered with an imaginary Global 
Positioning System filling space between Earth and a star. The results 
obtained in [1] can also be presented at a schematic level, as will be 
done in the present Section.  

Earth Star

Twin in spacecraft

Twin on the Earth

v
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Fig. 2. The inertial reference frames of twin 0 and twin 1. CLE
0 is in the hands 

of twin 0, and CLS
0 is in the hands of twin 1. 

 
At the initial time instant let there be two twins. One of them stays 

on the Earth, while the another one moves at constant velocity v along 
the axis x toward the star S (Fig. 1). 

In the stationary reference frame (Earth frame 0), there is an 
almost infinite set of clocks {CLE

n} to be placed at spatial points xn, 
and, for simplicity, xn–xn-1 is a constant value for any n. The same set 
of clocks {CLS

n} is in the frame of moving twin (spacecraft frame 1), 
where x’n-x’n-1 is also a constant value for any n (Fig. 2). All clocks in 
their own frame are Einstein-synchronized. Then under travel of twin 
1, the twin 0 sees that the clock CLS

0 in the hands of twin 1 ticks 
slower by γ times in comparison with CLE

0, held in his own hands. 

(Hereinafter 2 21 1 v cγ = − ). Ref. [1] called attention to an 
interesting effect: if twin 0 looks for a rate of succession of clocks 
{CLS

i}, passing across his laboratory with the speed v, he finds that 
time in the succession goes by γ  times faster than for the Earth clock. 
This is a consequence of the Lorentz transformation, or the “time 
slippage effect,” defined in [1]. There is no mystery in this effect, if 
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we remember that the remote clocks, being synchronized in frame 1, 
are not synchronized in frame 0. In particular, one can show that the 
momentary readings of the clock CLS

0 and CLS
-i in the Earth frame 0 

differ by the term 2
it x v cγ∆ = , if these clocks are Einstein-

synchronized in frame 1. In its turn , in the Earth frame ix vt= , 
where t is the travel time of the spacecraft to point xi. Hence, 

2 2t t v cγ∆ = . At the instant t the Earth twin sees that CLS
0 shows 

0
st t γ= . Thus, the reading of CLS

-i, passing across the Earth at the 
this instant, is 

 2 2
0

S S
it t t t tv c tγ γ γ= + ∆ = + = .  (1) 

This explains the observation stated above: judged in the Earth frame 
all individual traveling clocks go slower, but in the succession of 
clocks passing a fixed Earth point time goes faster. 

A symmetrical situation is realized in the spacecraft frame 1. The 
traveling twin sees that E

0CL  ticks slower by a factor γ than his own 

clock S
0CL , while in succession of passing clocks { E

iCL } time goes γ 

times faster than for S
0CL . The latter is due to the fact that two 

Einstein-synchronized remote clocks in the Earth frame are not 
synchronized with each other in the spacecraft frame 1. This 
symmetrical situation emerges when the spacecraft reaches star S.  

Thus, the travelling twin arrives at the star S, which is remote from 
the Earth at the distance xn in the Earth frame 0. At this instant twin 1 
sees the clock E

nCL  in the window of his spacecraft, while the Earth 

twin sees clocks S
n'CL − , passing across his laboratory. (Here n≠n’ due 

to the scale contraction effect.) The Earth twin fixes the reading of his 
clock E

0CL  0 /E
nt x v= , and the reading of n'CLS

− , due to Eq. (1), 
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'
S
n nt x vγ− = *. In addition, he concludes that the reading of the clock 

on the board of spacecraft is 0 0
S Et t γ= . The spacecraft twin sees the 

reading of his clock S
0CL  0' ' / /S

n nt x v x vγ= = , and the reading of 
E

nCL  0' ' /E
n nt t x vγ= = . In addition, he concludes that due to the 

time dilation effect, the Earth clock E
0CL  indicates 0 0' 'E St t γ= . 

Assuming the numerical values adopted in [1] (t0 = 49 months ≈ 4 
years, v = 0.99c, and γ = 7), we obtain ' 07 343S E

nt t− = =  months ≈ 28 

years, 0 0 7S Et t= = 7 months, 0'
St = 7 months, 

2
0 0' ' 7E S

nt t x vγ= =  = 1 month. We therefore have the following 
table: 

What Earth twin sees: What Spacecraft twin sees: 

0
Et  = 49 months ( nx v ) 0'

St  = 7 months ( nx vγ ) 

'
S
nt−  = 343 months ( nx vγ ) 'Ent  = 49 months ( nx v ) 

0
St  = 7 months ( nx vγ ) 0'

Et  = 1 month ( 2
nx vγ ) 

Further, let the twin 1 turn back. In ref. [1] Van Flandern supposed 
a rotation about the star S (Fig. 3). Then, according to [1], at the 
beginning of rotation the spacecraft twin infers that only one 
month has elapsed back on Earth since his journey began ( 0'

Et  = 1 

                                                        
* Hereinafter we adopt the following designations for space-time coordinates 

in both frames: the subscript signifies a point of location {xi}, the superscript 
indicates an affiliation with a reference frame (E- Earth, S – spacecraft); primed 
four-vectors belong to the spacecraft frame 1, while unprimed four-vectors 

belong to the Earth frame 0. For example, E
nt '  indicates time for twin 1 on the 

Earth clock at the point xn.  
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month). When the spacecraft turns around, then, according to [1], 
the Earth time for the twin 1 is 8 years: four years into the future  

Fig. 3. In order to return home, the twin 1 orbits around the star S. 

instead of the past. This is a consequence of the “time slippage 
effect”. Thus, for the traveling twin Earth time changed suddenly, 
if his rotation time is negligible in comparison with his total 
journey time. This paradox becomes especially drastic if twin 1 
orbits S several times [1]. Then each time the traveler heads away 
from Earth in that orbit, Earth time drops back to 1 month; and 
each time the traveler heads toward Earth, inferred Earth time 
becomes 8 years. This is a quite paradoxical result. At the same 
time, in terms of “time slippage effect” it is difficult to understand 
its physics. Now let us explain this observation, considering the 
process of acceleration of twin 1. To simplify consideration 
further, we substitute for rotational motion a progressive motion at 
the constant (in relativistic meaning) negative acceleration a along 
the axis x. Let us divide this process into two stages: deceleration 
from the initial velocity v to v = 0 (which can be associated with 
rotation during the first quarter of the rotational period); and 
further acceleration from v = 0 to –v (rotation during the second 
quarter). Here we assume that the acceleration a is so large that the 
time of acceleration is negligible in comparison with travel time. 
During this rotation the spacecraft twin infers the presence of a 
constant gravitation field, increasing with increase of x. Then 

Earth Star

Spacecraft
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according to a well-known result of relativity, he observes a 
different rate of clocks for different points x: clocks tick faster with 
decrease of x. Hence, the clock E

0CL  (located in the point –x’n) 

ticks faster, than E
nCL  (located in the point x’ = 0), during 

acceleration of the spacecraft frame. As a result, an additional time 
difference between readings of these clocks appears due to 
deceleration. The calculations are very complex, because we have 
to take into account time-dependent scale contraction and time 
dilation effects. However, the final result can be easily predicted 
from physical reasoning: at the time instant when the momentary 
velocity of the spacecraft is equal to zero, the Earth frame 0 
becomes an instantaneously co-moving inertial frame. Hence, all 
clocks, being synchronized in frame 0, are synchronized in frame 
1, too. This means that at v(t) = 0 the clocks E

0CL  and E
nCL  show 

equal time in frame 1. Since E
nCL  ( 'Ent ) shows 4 years, then E

0CL  

also shows 4 years. Before the deceleration E
0CL  ( 0'

Et ) indicated 1 
month (see table). Therefore, we get a sudden change of Earth time 
for the spacecraft twin. This change is found as a difference of 'Ent  

and 0'
Et  before the deceleration process: 

 2 2
0' 'E E

a n n n nt t t x v x v x v cγ∆ = − = − = . (2) 

It is interesting to note that a short-time deceleration process “causes” 
a large time change at∆ , which does not depend on deceleration time. 
This result can be explained at a qualitative level for v << c and 
ax/c2<<1, for which the calculations are greatly simplified. In this 
approximation a dependence of time on the space coordinate in a 
uniformly accelerated frame is written as [2] 
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 2( ) (0) 1
ax

t x t
c

 ≈ − 
 

 (3) 

for any admissible definition of an accelerated frame. Then for the 
point x = –xn (in the adopted approximation x’ can be taken to be 
equal to x in Eq. (3)), we derive 

 2 2

(0)
( ) (0) 1 (0)n nax t ax

t x t t
c c

 ≈ + = + 
 

. (4) 

Taking t(0) to be equal to the deceleration time, we get at(0) = v, and 

 2( ) (0) nvx
t x t

c
= + , 2( ) (0) n

a

vx
t t x t

c
∆ = − = , (5) 

which coincides with (2). 
One can add that for the second stage of non-inertial motion of 

twin 1 (acceleration from v = 0 to +v), the value at∆  increases two 
times, and at the end of this stage the traveler sees the Earth time 8 
years.  

Thus, in full agreement with [1] we conclude that there is no 
essential change of local time under acceleration of a twin; sudden 
changes occur only with remote clocks. This is a cornerstone of the 
relativistic explanation of the known forms of twin paradox, and 
many supporters of relativity theory are quite satisfied with this 
explanation. However, there is a very difficult logical point for 
relativity theory in this explanation. It is clear that there is no causal 
relation between acceleration of a spacecraft and sudden changes of 
time in remote clocks. Therefore, we have to conclude that such 
changes of time are “apparent” phenomena for the spacecraft twin. 
This is especially clearly seen for rotation of spacecraft around the 
star: the Earth time cannot physically change by 8 years and oscillate 
within this range during continuous orbiting of the spacecraft. 
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However, special relativity does not admit “apparent” phenomena in 
space-time: all that we measure is supposed to be real. This 
conclusion follows from Einstein’s postulates. Indeed, an equivalence 
of all inertial reference frames and constancy of light velocity mean 
that the geometry of empty space-time in all inertial reference frames 
is pseudo-Euclidean with Galilean metrics in Cartesian coordinates. 
(The Galilean metric tensor gG has the form: 00 1,g =  

11 22 33 1g g g= = = − , all other 0ikg = ). This and only this geometry 
has an exclusive property: the measured space and time coordinates 
give their physical magnitudes directly. Hence, according to special 
relativity, there are no “apparent” phenomena in an empty space-time, 
and the oscillation of Earth time within 8 years during orbit of 
spacecraft around a star is a real effect. We may certainly state that 
this is not physically correct. At the same time, the lack of causal 
relationship between the Earth’s and star’s events does not allow us to 
derive mathematically inconsistent results in consideration of the twin 
paradox. 

The problem becomes even more complicated when we postulate 
a probabilistic nature of the behavior of the twins. This variety of twin 
paradox is considered in the next Section. 
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Fig. 4. The twin 1 moves toward the barrier B1, and the barrier B0 moves 
toward twin 0 in the “global” inertial frame G. 

3. Butterflies paradox 
Consider the following gedanken experiment. Let the twin 0 be at rest 
in some “global” inertial frame G, and the twin 1 move at the constant 
velocity v along the x axis. Both twins are inside their own identical 
spacecrafts. At t = 0 both of them have the space coordinate x = 0. At 
the points x = ±L of frame G (which initially coincides with the frame 
of twin 0) let there be two identical special barriers (Fig. 4), which 
have the following property: with the probability ½ the spacecraft 
passes across a barrier without interaction, and with the probability ½ 
the spacecraft collides with the barrier and suddenly loses its velocity. 
It is always a pleasure to conduct gedanken experiments, where we 
may dispense with technical details. Nevertheless, in our case we can 
imagine the barriers in Fig. 5 as two rotating very large half-circles 
with mass to be equal to the mass of spacecraft. The right barrier B1 
is at rest in G, while the left barrier moves at the same constant  

L L

x

y

B1

B0
Twin 0

Twin 1 v

v

G-frame
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Fig. 5. Imaginary construction of barrier. We assume that a collision of 
spacecraft with the barrier is fully elastic. 
 

velocity v along the axis x toward twin 0. We again assume that 
v = 0.99c, and γ = 7. Let L/v be equal to 7 hours, and let there be a 
butterfly in each spacecraft that lives 20 hours. Our problem is to 
determine the state of each butterfly (either it is alive, or has died of 
old age) at the instant when each spacecraft meets its own barrier. The 
problem can be solved for all available observers: twin 0, twin 1, and 
observer in G-frame. We also assume that each twin reports to the 
other participants of this story about the state of his butterfly. 

The problem is easily solved for the G-frame. Each spacecraft 
meets its own barrier at the moment Gt L v=  = 7 hours; the same 
moment is fixed by twin 0. Thus, after meeting with the barrier B0, 
twin 0 sends a report to the other observers that his butterfly is alive. 
This result does not depend on whether he collides or passes across 
B0: even if he collides, nothing changes in the local time of twin 0. 
The elapsed time in the spacecraft of twin 1 at the moment of his 
meeting with B1 is L vγ  = 1 hour, and this twin also reports that his 
butterfly is living, regardless of a result of his interaction with B1.  

Spacecraft hitting point
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Let us consider the same problem in frame 0. Until a meeting with 
B0, the frame 0 coincides with G-frame, and both twins interact with 
their barriers at Gt L v=  = 7 hours. The elapsed time in the 
spacecraft of twin 1 at the moment of interaction with B1 is L vγ  = 1 
hour. Further, let us imagine that both twins passed across their 
barriers without interaction. (The probability of this event is ¼). Then 
each twin reports that his butterfly flies after passing the barriers. 
Now let us consider another situation, which is also realized with the 
probability ¼: twin 1 passes across B1 without collision, while twin 0 
collides with B0 and suddenly acquires a constant velocity v in G-
frame. The acceleration process changes nothing in his local time, and 
twin 0 reports to both other observers that his butterfly is living. At 
the same time, he reveals that his frame 0 had acceleration, while the 
frame 1 was always inertial. Hence, in accordance with a well known 
result of relativity, he concludes that his own clock ticked slower than 
the clock in spacecraft 1. Since his clock indicates 7 hours, the clock 
of twin 1 should indicate γ times more, i.e., 49 hours. One can show 
that this result can be directly derived from Eqs. (2)-(5). This time 
essentially exceeds the lifetime of the butterfly (20 hours). Hence, 
twin 0 concludes that the butterfly in spacecraft 1 has died. 

Thus, if twin 0 does not collide with B0, he expects that the 
butterfly in spacecraft 1 is living; if he collides with B0, he infers that 
butterfly 1 has died many hours ago. The most interesting point is that 
just before the collision, twin 0 does not know what to think: in fact, 
he rolls the dice in order to decide whether the butterfly 1 is alive or 
dead. We notice that the second conclusion contradicts the factual 
observation that was made in the G-frame, where both butterflies live 
after collision. Here we meet a contradiction with causality. 

Now we omit a consideration of this problem for other motional 
trajectories of twins 0 and 1, depending on a result of their interaction 
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with B0 and B1, as well as an analysis of the butterfly paradox in 
frame 1: again there appear situations that contradict one another. (It 
should be borne in mind that in frame 1 the interactions with B0 and 
B1 are not simultaneous; in addition, the distance to B0 at the initial 
moment is L γ ). So, it seems that we have to ignore all these 
solutions, adopting the optimistic (for butterflies) observation in G-
frame: both butterflies are alive after the spacecraft interact with the 
barriers. A reason to accept this resolution of the problem is an 
absence of any absolute events in the G-frame. Hence that frame can 
be taken as preferred for the problem considered (and “G” can be 
transcribed as God). However, it contradicts relativity. We again turn 
in circles. 

4. Twin paradox in the Lorentz ether theory  
Strictly speaking, the title of this Section is not correct: Lorentz ether 
theory does not know any paradoxes of relative motion. It postulates 
the presence of a preferred (absolute) reference frame, wherein all 
observations are true by definition. The author of [1] states that the 
local gravity field serves as the “preferred frame” of LET. This 
assumption, without change in the mathematical structure of the 
theory, constitutes “Lorentzian relativity”. 

Now we will show that the twin paradox can be also resolved in an 
empty space, under direct application of the LET postulates without 
specification of a physical model of ether†. 

                                                        
† Let us recall the postulates of LET in its modern form: 
1)  There is an “absolute” reference frame K0, wherein light velocity is 

isotropic and equal to c. 2)  In an arbitrary reference frame K, moving at 
constant velocity v

r
 in K0, the velocity of light is equal to vcc

rrr
−=' . 3)  In this 
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Let us imagine that both twins use so-called light clocks. We recall 
that the latter is composed of two faced mirrors, and a light ray 
reflects infinitely between the mirrors along their common normal. 
Time of light propagation from one mirror to another and back is 
taken as the unit time. 

In the absolute reference frame ? 0 let two identical light clocks be 
at rest. The distance from one mirror (M1) to another (M2) is equal to 
L. The axes of clocks (normal to M1, M2) are parallel to the axis y. 
Time of light propagation from one mirror to another and back is 
t0 = 2L/c. Further, let the first clock (Cl0) remain at rest together with 
twin 0, while the second clock Cl1 together with twin 1 acquires a 
constant velocity –v along the x axis. Then one can see that the time 
of light propagation from M10 to M20 and back (in Cl0) in the frame 
K0 is equal to 2L/c (Fig. 6,a, left side), while the time of light 
propagation from M11 to M21 and back (in Cl1) becomes equal to  

 2 2
1 2 1 ,t L c v c= −  (6) 

(Fig. 6,a, right side), i.e., the rate of the moving clock slows down by 
γ. Now let us go to the inertial frame K1 of twin 1, which is attached 
to the moving clock Cl1. In this frame a physical light velocity cph is 
determined by the Galilean law of speed composition, in accordance 
with the second LET postulate, Hence, the light ray, propagating from 
M10 to M20 (in clock Cl0), has the following projections upon the 
coordinate axes of K1: ( )ph x

c v= ; ( )ph y
c c= . A modulus of light 

velocity is 2 2
phc c v= +  (see Fig. 6,b, right side). Then the 

propagation time of light from M10 to M20 and back is 
                                                                                                                            
reference frame K a linear scale is contracted by 221 cv−  along the vector v

r
. 

4)  In this reference frame K time is dilated by 221 cv− .  
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( )ph 02
y

L c t= , i.e., the true (physical) rate of Cl0 for twin 1 does not 

depend on the velocity of K1 in K0.  

? 20

? 10

a: what the twin 0 does see
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? 11

? 21
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Fig. 6. Diagram of light propagation in light clocks Cl0 and Cl1 for twin 0 (a) and twin 
1 (b). Due to Galilean law of speed composition, both twins fix the identical true 
rates of Cl0 and Cl1 in their reference frames: dilation of time is absolute. 
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To determine the rate of clock Cl1, twin 1 should also apply the 
Galilean law of speed composition. The vectors c

r  and v
r  are added 

so as to give a resultant vector 'c
r  along the y axis (Fig. 6,b, left  side). 

Since 'c
r  and v

r  are mutually perpendicular, it follows that 
2 2'c c v= − . From this the time of light propagation from M11 to 

M21 and back in the frame K1 is  

 2 2
1' 2 1 ,t L c v c= −  (7) 

i.e., the clock Cl1 slows down its true rate in both K0 and K1 inertial 
frames.  

As a result, both twins get an identical true rate of each light clock. 
We can add that for twin 0 the corresponding time intervals, 
measured experimentally, are directly described by Eqs. (6), (7). But 
what will twin 1 measure in his moving frame? We assert that the 
results of his measurements differ from Eqs. (6), (7). In order to 
explain this assertion, let us, first of all, define a model of inertial 
reference frame wherein a measurement of space and time intervals is 
carried out. Let us take the most popular Einstein model: the use of a 
standard scale for measurement of lengths, a standard clock for 
measurement of time and exchange of light signals between distant 
clocks for their synchronization (Einstein method). We further 
assume that both inertial frames K0 and K1 are equipped with the 
same measuring instruments, and we look for the results of 
measurements in moving frame K1. Due to the third LET postulate, 
the unit scales of twin 1 are contracted γ times in comparison with 
their values for v = 0; the time of standard clocks is dilated by γ times, 
and neither effect is detectable in K1. In addition, the Einstein 
synchronization of two distant clocks in K1 does not assure their 
instantaneous true readings will be equal: due to the light velocity 
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anisotropy, two clocks Cl0 and Cl1, lying along the x axis at separation 
L/γ  show a difference of their instantaneous readings 

 
( )2 2

1
.

2s

L L Lv
t

c v c v c vγ γ
 ∆ = − = − + − 

 (8) 

Keeping in mind Eq. (8), let us determine a rate of light clock Cl0 for 
twin 1. At the instant tph  = 0 let a light signal in Cl0 be emitted from 
M10 to M20. We call xph the coordinate of M10 along the axis at 
tph = 0. A standard clock, recording this instant, is also at the point xph. 
At the time moment ∆tph the light signal returns to M10, which has 
moved through the distance ∆xph = v∆tph. This instant is recorded by a 
second standard clock placed at the point xph+∆xph. True (physical) 
time of light propagation from M10 to M20 and back, ∆tph, as shown 
above, equals to 2L/c in the frame K1. However, now we should take 
into account an error of standard clock synchronization according to 
eq. (8), where L/γ should be replaced by ∆xph = v∆tph = 2vL/c. Hence, 
we obtain 

 
2

2 2

2
.s

L v
t

c c v
∆ =

−
 

That is why a difference of indications of light clocks (fixing the 
instants of departure and arrival of light pulse at M10) at the points xph 
and xph+∆xph is 

 ( )
2

ph 2 2 2 2

2 2 2
1s

L L v L
t t t

c c c v c v c
 

∆ = ∆ + ∆ = + = − − 
. 

This time interval is measured by a standard clock, which is 
slowed down by γ times. Therefore, a result of measurement of ∆t 
with such a standard clock is γ times less: 
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 ( )
2

2 2
ex 21 2 1

v
t t L c v c

c
∆ = ∆ − = −  (9) 

Such is the rate of CL0 for twin 1, obtained by means of his 
instruments. We see that twin 1 records a dilation of time in the 
“moving” frame K0, and that ext∆  is exactly equal to the value 
derived from the Lorentz transformations. 

Now let us determine the result of twin 1’s time measurement by 
his own clock Cl1. According to Eq. (7), Cl1 slows down by γ times in 
the frame K1. Here we remember that the rate of this clock is 
compared with the rate of a standard clock in K1. However, the 
standard clock time is dilated γ times, in accordance with the fourth 
LET postulate. Therefore, a time interval measured by this standard 
clock should be γ times smaller, i.e., 2L/c. As a result, the absolute 
dilation of proper time in the frame K1 is experimentally not 
observable, and twin 1 detects no dependence of clock rate on the 
absolute velocity of his frame.  

Thus, when he measures the rates of clocks Cl0 and Cl1, twin 1 
concludes that his own clock ticks faster than Cl0, although the 
physical rate of Cl1 is γ times slower than Cl0. This explains the 
illusory relativity of the time dilation effect in LET.  

It is quite interesting to notice that such an illusory relativity of the 
time dilation effect, described by the Lorentz transformations, is not 
an exclusive property of LET. The same result is obtained in a wide 
class of ether theories, which adopt a pseudo-Euclidean geometry of 
ether with Galilean metrics. This problem is considered in the next 
subsection. 

4.1. Mathematization of LET 
We now emphasize an important result obtained above: in a moving 
inertial reference frame, given acceptance of LET postulates, we have 
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to distinguish the physical (true) time intervals and the time intervals 
obtained via measurements. (In fact, this means rejecting the relativity 
postulates: see the end of Section 2). We can generalize this 
conclusion, and introduce the physical (true) four-vectors ph

ix  

(i = 0…3) and “measured” four-vectors ex
ix  in an arbitrary inertial 

reference frame. This can be done not only for LET, but for any other 
ether theory that adopts a dependence of physical space and time 
intervals on absolute velocity. Next, in ether theories, assuming a 
Galilean metric of absolute space, we formally introduce the 
Minkowskian four-vectors Lx  (without determination of their 
physical meaning), which are subject to the Lorentz transformation L: 

 ( ) ( )L L'
j

iji
x L x= , (10) 

Since motion of an arbitrary inertial frame does not change the 
geometry of absolute space, it continues to be pseudo-Euclidean for 
any moving inertial observer. However, due to possible dependence 
of space and time intervals on the absolute velocity, the metric tensor 
g in a moving frame is no longer Galilean. This means that physical 
four-vectors in arbitrary inertial frames should be linear functions of 
Minkowskian four-vectors: 

 ( ) ( )ph L
j

iji
x B x= , (11) 

where the coefficients Bij do not depend on space-time coordinates of 
a moving inertial frame; they only depend on its absolute velocity v

r . 
(This kind of pseudo-Euclidean geometry has so-called oblique-
angled metrics). It is essential that for v = 0, the matrix B reduces to 
the unit matrix, and 

 ( ) ( )ph L( 0)
ii

x v x= = . (12) 
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Eq. (11) can then be rewritten in the form 

 ( ) ( )ph ph( ) ( ) ( 0)
j

iji
x v B v x v= =

r r
, (13) 

which clearly indicates that the matrix B describes a dependence of 
physical space and time intervals in a moving inertial frame on 
absolute velocity v

r . 
Transformation (11) allows one to write a relationship between 

time components of the four-vectors phx  and Lx : 

 ( ) ( ) ( )0
ph 00 L 0 L0

x B x B x α
α= +  (14) 

(α = 1..3). For two events at a fixed spatial point ( ( )phx
α

 = 0) 

 ( ) ( ) ( )0
ph 00 L 00 ph0

( ) ( 0)
i

x v B x B x v= = =
r

. (15) 

Hence, the coefficient 00B  describes the change of clock rate at a 
fixed spatial point in motion at the constant absolute velocity v

r . The 
change takes place for both standard and physical time intervals. 
Therefore, the measured time interval at a fixed spatial point is  

 ( ) ( )0

ex ph0
00

1
x x

B
= . (16) 

For time intervals at two different spatial points, separated by the 
distance ( )phx

α
, we write 

 ( ) ( ) ( )ex ph ph0 0 0
00

1
x x x

B
 = + ∆  . (17) 
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where ( )ph 0
x∆  is the error of synchronization of clocks separated by 

the distance ( )phx
α

 in oblique-angled space-time. The value of 

( )ph 0
x∆  can be found from the equality 

 ( ) ( )ph ph02 01
2x x=  (18) 

(Einstein’s method of clock synchronization), where ( )ph 01
x  stands 

for the time for light propagation from the first clock Cl1 (at the origin 
of coordinates) to the second clock Cl2 (at the point ( )phx

α
) and back 

according to Cl1, while ( )ph 02
x  is the reading of Cl2 at the moment of 

arrival of the light pulse. For oblique-angled space-time the 
propagation time of light from Cl1 to Cl2 ( )ph 0

x
+
 is not equal, in 

general, to the propagation time in the reverse direction ( )ph 0
x

−
. 

Hence, implementation of the equality (18) is possible only in the 
case where the readings of both clocks at the initial moment of time 
differ by the value ( )ph 0

x∆ , and  

 ( ) ( ) ( )ph ph ph01 0 0

1
2

x x x
+ −

 = +  , 

 ( ) ( ) ( )ph ph ph02 0 0

1
2

x x x
+

 = + ∆  . (19) 

Therefore, using Eq. (18), we obtain: 

 ( ) ( ) ( )ph ph ph0 0 0

1
2

x x x
− +

 ∆ = +  . (20) 
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Expressions for ph 0( )x +  and ph 0( )x −  can be found from Eq. (11): 

 

( ) ( ) ( )

( ) ( ) ( )

0
ph 00 L 0 L0

0
ph 00 L 0 L0

,

.

 

x B x B x

x B x B x

α
α

α
α

+

−

= +

= −  (21) 

Substituting Eq. (21) into Eq. (20), we get: 

 ( ) ( )ph 0 L0
x B x α

α∆ = − . (22) 

(This equation represents a generalization of Eq. (8)). Further 
substitution of Eqs. (22) and (14) into Eq. (17) gives: 

 ( ) ( )ex L0 0
x x= . (23) 

Thus, we have derived a remarkable result: for any ether theory 
adopting Galilean metrics of absolute space, the measured time 
intervals always obey the Lorentz transformations. Consequently, the 
twin paradox now loses all physical meaning: the time dilation effect 
is absolute, but due to a strange property of Nature, each twin ascribes 
a relative dilation of time to the other’s clock. And this conclusion is 
true not only for LET, but for an infinite number of ether space-time 
theories! 

Looking at Eq. (23), we may ask the following interesting 
question: is this equality valid for space intervals, too? In other words, 
do we get the equality 

 ( ) ( )ex Lx xα α=  (24) 

for an arbitrary matrix B in Eq. (11)? In general, this is not the case. 
We can show (see, e.g. [3-5]) that Eq. (24) is realized in the case 
where the coefficients Bα0 = 0. Then Eqs. (23), (24) can be written 
simultaneously as 



 Apeiron, Vol. 10, No. 3, July 2003 226 

© 2003 C. Roy Keys Inc. 

 ( ) ( )ex L
i ix x= , (25) 

(i = 0…3), which means that departures of oblique-angled metrics in 
moving inertial frames from Galilean metrics are not experimentally 
observable. In other words, an observer in any inertial frame moving 
in the absolute space sees the world as in SRT, for an infinite set of 
ether space-time theories. However, this does not yet mean that SRT 
and all ether theories cannot be distinguished experimentally (see, e.g. 
[6]). This problem falls outside the scope of the present paper. 

Now let us determine a physical meaning of ether theories with 
Bα0 = 0 in Eq. (11). For such theories, due to the equality (25), a 
transformation for measured space-time coordinates can be written as 

 ( ) ( )ex ex' j
iji

x L x= . (26) 

(In this subsection the primed four-vectors belong to the absolute 
frame K0). Further, let us assume that true (physical) four-vectors in 
the absolute frame K0 and in an arbitrary inertial frame K are related 
by some admissible linear transformation A: 

 ( ) ( )ph ph( ) '
j

iji
x A v x=

r
. (27) 

Here we exclude the trivial rotations and translations of space, so that 
the matrix A depends only on the absolute velocity v

r  of the frame K. 
Taking into account that in the absolute frame K0  
 ph ex L' ' 'x x x= = , (28) 

we obtain from Eqs. (26)-(28) a relationship between four-vectors phx  

and Lx  in an arbitrary inertial frame K: 

 ( ) ( )1
ph L( ) ( ) jk

i kji
x A v L v x−=

r r
.  (29) 

Comparing Eq. (29) with Eq. (11), we find 
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 1( ) ( ) ( ).k
ij i kjB v A v L v−=

r r r
 (30) 

Further, assuming validity of a reciprocity principle: 
 A-1( v−

r ) = A(v
r ),  (31) 

and substituting into Eq. (30) the known form of the matrix L (see, 
e.g. [2]), we get: 
 00 00B Aγ= , (32a) 

 0 0Bα = , (32b) 

 0 0 00 2 2 2
00

1
[ ( 1) ( 1)]
v v

B A A
c A v

α α
α α γ γ= + × + − − , (32c) 

 0 2

1
(1 )

v
B A A

v
β

αβ αβ α γ
= + − . (32d) 

We see that the coefficient 0Bα  is equal to zero for any matrix A. We 
can show that adoption of the reciprocity principle (31) is essential for 
vanishing 0Bα . 

Thus, we conclude that the observable world for each inertially 
moving observer looks as in SRT (Eq. (25)) in any ether theory that 
postulates a Galilean metric of an absolute space and the reciprocity 
principle. These two postulates, being essentially more general than 
SRT postulates, do not allow determination of the matrix of the 
physical space-time transformation A in closed form. We may only 
investigate the properties of physical space-time for this or that 
particular choice of the matrix A. For example, let us make the 
simplest choice: 
 A = G, 
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where G is the Galilean matrix: Gii = 1, Gα0  = –vα, and all other 
Gij = 0. Substituting matrix G in place of matrix A in Eqs. (32), we 
find the following coefficients of matrix B: 

 00 0 0 2 2

1
, 0, , 1

v vv
B B B B

c v
α βα

α α αβ αβγ γ δ
γ

 
= = = = − 

 
, (33) 

where αβδ  is the Kronecker symbol. Further substitution of Eq. (33) 
into Eq. (13) allows us to determine a dependence of physical space-
time four-vectors on the absolute velocity v

r  of an arbitrary inertial 
reference frame K: 

 
( )ph 2 2

ph ph 2

( 0),
( ) ( 0) 1 ( / ) 1

v r v v
r v r v v c

v

=  = = + − − 

r r rr r r
, (34) 

 ph ph
ph 2 2 2 2 2

( 0) ( 0)
( )

1 ( / ) 1 ( / )

t v r v v
t v

v c c v c

= =
= +

− −

r rr
. (35) 

For the time intervals at a fixed spatial point of the frame K ( phr  = 0), 

we obtain the dependence of pht  on v
r  [see, Eq. (35)]: 

 2 2
ph ph( ) ( 0) / 1 ( / ),t v t v v c= = −

r
 (36) 

which represents a mathematical expression of the fourth postulate of 
LET: an absolute dilation of physical time by the factor γ. 
Furthermore, we obtain from Eq. (34): 

 
( ) ( ) 2 2

ph ph

ph ph

( ), ( 0), 1 ,

( ) ( 0) ,

r v v r v v v c

r v v r v v

= = −

   × = = ×   

r r r r r
r r r r r  (37) 

which represents a mathematical expression of the third postulate of 
LET: an absolute contraction of moving physical scale along the 
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absolute velocity vector (Fitzgerald-Lorentz hypothesis). Finally, 
transformation (27) under A = G leads to the second LET postulate: 
the Galilean law of speed addition for physical light velocity phc . 
Thus, we have verified the full set of the Lorentz ether postulates in 
physical space-time for A = G. 

In fact, we reveal the physical meaning of LET: it responds to the 
Galilean transformation in physical space-time‡. The postulates of 
LET, which appeared artificial to many physicists for a century, now 
represent a direct consequence of the Galilean transforms under a 
natural assumption about Galilean metrics in an absolute space. The 
simplicity of the Galilean transformations assigns an exclusive place 
to LET among other admissible ether theories and leads us to believe 
that this theory alone describes nature. 

5. Conclusions 
1. Application of the standard formalism of special relativity to the 

twin paradox in the presentation by Van Flandern repeats his 
results. There are no rapid changes in local time of an 
accelerated clock; sudden changes happen with remote clocks. 
This creates paradoxical situations upon detailed analysis of the 
twin paradox.  

2. A variety of twin paradox, where the motional trajectories of the 
twins have a probabilistic nature (“butterflies paradox”), shows 
that it is impossible to explain under equivalence of all inertial 
reference frames. 

3. Application of the LET postulates to analysis of the rate of a 
light clock in empty space indicates that in ether theories one 

                                                        
‡ An essential difference of LET from classical Newtonian physics is the 

limited velocity of light, which forbids “non-admissible” metric coefficients in 
oblique-angled space-time, whereas LET admits the velocities higher than c [4]. 
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should distinguish between true (physical) values and the values 
obtained via measurements. This approach reveals that a dilation 
of true time is absolute; dilation of “measured” (“illusory”) time 
is relative. This fully explains all possible observations in the 
twin paradox. 

4. In any ether theory that adopts the Galilean metrics for absolute 
space and the reciprocity principle, the observable world looks 
as in SRT: the “measured” space and time intervals obey the 
Lorentz transformations. The exclusive place of LET among an 
infinite number of such ether theories is defined by a choice of 
the Galilean transformations for physical space-time four-
vectors, the simplest kind of non-trivial transformations in 
Nature. The Lorentz ether postulates are not independent 
artificial assumptions, they are derived from the Galilean 
transformations, keeping Galilean metrics of the absolute space. 
In this theory the twin problem loses its paradoxical nature. 
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