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Recent studies by mathematicians and physicists have 
identified a close association between the distribution of prime 
numbers and quantum mechanical laws governing the 
subatomic dynamics of quantum systems such as the electron 
or the photon. It is now recognised that Cantorian fractal 
space-time fluctuations characterise dynamical systems of all 
space-time scales ranging from the microscopic subatomic 
dynamics to macro-scale turbulent fluid flows such as 
atmospheric flows. The spacing intervals of adjacent prime 
numbers also exhibit fractal (irregular) fluctuations generic to 
dynamical systems in nature. The apparently irregular 
(chaotic) fractal fluctuations of dynamical systems, however, 
exhibit self-similar geometrical pattern and are associated with 
inverse power-law form for the power spectrum. Self-similar 
fluctuations imply long-range space-time correlations 
identified as self-organized criticality. A cell dynamical 
system model for atmo spheric flows developed by the author 
gives the following important results: (a) Self-organized 
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criticality is a signature of quantum-like chaos (b) The 
observed self-organized criticality is quantified in terms of the 
universal inverse power-law form of the statistical normal 
distribution (c) The spectrum of fractal fluctuations is a 
broadband continuum with embedded dominant eddies. The 
cell dynamical system model is a general systems theory 
applicable to all dynamical systems (real world and computed) 
and the model concepts are applied to derive the following 
results for the observed association between prime number 
distribution and quantum-like chaos. (i) Number theoretical 
concepts are intrinsically related to the quantitative description 
of dynamical systems. (ii) Continuous periodogram analyses 
of different sets of adjacent prime number spacing intervals 
show that the power spectra follow the model predicted 
universal inverse power-law form of the statistical normal 
distribution. The prime number distribution therefore exhibits 
self-organized criticality, which is a signature of quantum-like 
chaos. (iii) The continuum real number field contains unique 
structures, namely, prime numbers, which are analogous to the 
dominant eddies in the eddy continuum in turbulent fluid 
flows. 

Keywords: quantum-like chaos in prime numbers, fractal 
structure of primes, quantification of prime number 
distribution, prime numbers and fluid flows 

1. Introduction 
he continuum real number field (infinite number of decimals 
between any two integers) represented as Cartesian co-
ordinates [Mathews, 1961; Stewart and Tall, 1990; Devlin, 

1997; Stewart, 1998] is the basic computational tool in the simulation 
and prediction of the continuum dynamics of real world dynamical 
systems such as fluid flows, stock market price fluctuations, heart 
beat patterns, etc. Till the late 1970s, mathematical models were 

T
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based on Newtonian continuum dynamics with implicit assumption of 
linearity in the rate of change with respect to (w. r. t) time or space of 
the dynamical variable under consideration. The traditional 
mathematical model equations were of the form 

 1n n
n

dX
X X dt

dt+
 = +  
 

 (1) 

Constant value was assumed for the rate of change (dX/dt)n of the 
variable Xn at computational step n and infinitesimally small time or 
space intervals dt. Equation (1) will be linear and can be solved 
analytically provided the rate of change (dX/dt)n is constant. 
However, dynamical systems in nature exhibit irregular (fractal) 
fluctuations on all space and time scales and therefore the assumption 
of constant rate of change fails and Equation (1) does not have 
analytical solution. Numerical solutions are then obtained for discrete 
(finite) space-time intervals such that the continuum dynamics of 
Equation (1) is now computed as discrete dynamics given by 

 1n n

n

X
X X t

t+

 ∆
= + ∆ ∆ 

 (2) 

Numerical solutions obtained using Equation (2), which is 
basically a numerical integration procedure, involve iterative 
computations with feedback and amplification of round-off error of 
real number finite precision arithmetic. The Equation (2) also 
represents the relationship between continuum number field and 
embedded discrete (finite) number fields. Numerical solutions for 
non-linear dynamical systems represented by Equation (2) are 
sensitively dependent on initial conditions and give apparently chaotic 
solutions, identified as deterministic chaos. Deterministic chaos 
therefore characterises the evolution of discrete (finite) structures 
from the underlying continuum number field. 
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Historically, sensitive dependence on initial conditions of non-
linear dynamical systems was identified nearly a century ago by 
Poincare (Poincare, 1892) in his study of three-body problem, namely 
the sun, earth and the moon. Non-linear dynamics remained a 
neglected area of research till the advent of electronic computers in 
the late 1950s. Lorenz, in 1963 showed that numerical solutions of a 
simple model of atmospheric flows exhibited sensitive dependence on 
initial conditions implying loss of predictability of the future state of 
the system. The traditional non-linear dynamical system defined by 
Equation (2) is commonly used in all branches of science and other 
areas of human interest. Non-linear dynamics and chaos soon (by 
1980s) became a multidisciplinary field of intensive research (Gleick, 
1987). Sensitive dependence on initial conditions implies long-range 
space-time correlations. The observed irregular fluctuations of real 
world dynamical systems also exhibit such non-local connections 
manifested as fractal or self-similar geometry to the space-time 
evolution. The universal symmetry of self-similarity ubiquitous to 
dynamical systems in nature is now identified as self-organized 
criticality (Bak, Tang and Wiesenfeld, 1988). A symmetry of some 
figure or pattern is a transformation that leaves the figure invariant, in 
the sense that, taken as a whole it looks the same after the 
transformation as it did before, although individual points of the 
figure may be moved by the transformation (Devlin, 1997). Self-
similar structures have internal geometrical structure, which resemble 
the whole. The space-time organization of a hierarchy of self-similar 
space-time structures is common to real world as well as the 
numerical models (Equation 2) used for simulation. A substratum of 
continuum fluctuations self-organizes to generate the observed unique 
hierarchical structures both in real world and the continuum number 
field used as the tool for simulation. A cell dynamical system model 
developed by the author [Mary Selvam, 1990; Selvam and Suvarna 
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Fadnavis, 1998; 1999a;b] for turbulent fluid flows shows that self-
similar (fractal) space-time fluctuations exhibited by real world and 
numerical models of dynamical systems are signatures of quantum-
like mechanics. The model concepts are independent of the exact 
details, such as, the chemical, physical, physiological, etc., properties 
of the dynamical systems and therefore provide a general systems 
theory (Peacocke, 1989; Klir, 1993; Jean, 1994) applicable for all 
dynamical systems in nature. The model concepts are applicable to 
the emergence of unique prime number spectrum from the underlying 
substratum of continuum real number field. 

Recent studies indicate a close association between number theory 
in mathematics, in particular, the distribution of prime numbers and 
the chaotic orbits of excited quantum systems such as the hydrogen 
atom [Keating, 1990; Cipra, 1996; Klarreich, 2000]. Mathematical 
studies also indicate that Cantorian fractal space-time characterises 
quantum systems [Ord, 1983; Nottale, 1989; El Naschie, 1993]. The 
fractal fluctuations exhibited by prime number distribution and 
microscopic quantum systems belong to the newly identified science 
of non-linear dynamics and chaos. Quantification of the apparently 
irregular (chaotic) fractal fluctuations will help compute (predict) the 
space-time evolution of the fluctuations. The cell dynamical system 
model concepts described below (Section 2) provide a theory for 
unique quantification of the observed fractal fluctuations in terms of 
the universal inverse power-law form of the statistical normal 
distribution. 

2. Cell Dynamical System Model Concepts 
The model concepts are based on Townsend’s [Townsend, 1956] 
visualization of large eddies as envelopes enclosing turbulent eddy 
(small-scale) fluctuations (Figure 1). The relationship between root 
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mean square (r.m.s.) circulation speeds W and w∗ respectively of large 
and turbulent eddies of respective radii R and r is then given as 

 22 2 r
W w

Rπ ∗=  (3) 

The dynamical evolution of space-time fractal structures is 
quantified in terms of ordered energy flow between fluctuations of all 
scales in Equation (3), because the square of the eddy circulation 
speed represents the eddy energy (kinetic). A hierarchical continuum 
of eddies is generated by the integration of successively larger 
enclosed turbulent eddy circulations and therefore the eddy energy 
(kinetic) spectrum follows statistical normal distribution according to 
the Central Limit Theorem  [Ruhla, 1992; see Section 2.1(e) below]. 
Therefore, square of the eddy amplitude or the variance represents 
the probability. Such a result that the additive amplitudes of eddies, 
when squared, represent the probability densities is observed for the 
subatomic dynamics of quantum systems such as the electron or 
photon (Maddox 1988). Townsend’s visualisation of large eddy 
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Figure 1: Visualisation of the 
formation of large eddy (ABCD) as 
envelope e nclosing smaller scale 
eddies. By analogy, the continuum 
number field domain (Cartesian co-
ordinates) may also be obtained 
from successive integration of 
enclosed finite number field 
domains. 
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structure as quantified in Equation (3) leads to the most important 
result that the self-similar fractal fluctuations of atmospheric flows 
are manifestations of quantum-like chaos. 

2.1 Cell Dynamical System Model Predictions 
A summary of the important theoretical results derived from Equation 
(3) [Mary Selvam, 1990; Selvam and Suvarna Fadnavis, 1998; 1999a; 
b], which are applicable to the present study, is given in the following. 
(a) The fractal structure of the continuum flow pattern is resolved 

into an overall logarithmic spiral trajectory RoR1R2R3R4R5 with the 
quasiperiodic Penrose tiling pattern for the internal structure and 
is equivalent to a hierarchy of vortices (Figure 2). The 
successively larger eddy radii (ORo, OR1, etc.) and the 
corresponding circulation speeds (W1, W2 etc.) follow the 
Fibonacci mathematical series. A brief summary of details of 
Penrose tiling pattern relevant to the present study is given in the 
following. 
Historically, the British mathematician Roger Penrose discovered 
in 1974 the quasiperiodic Penrose tiling pattern, purely as a 
mathematical concept. The fundamental investigation of tilings, 
which fill space completely, is analogous to investigating the 
manner in which matter splits up into atoms and natural numbers 
split up into product of primes. The distinction between periodic 
and aperiodic tilings is somewhat analogous to the distinction 
between rational and irrational real numbers, where the latter have 
decimal expansions that continue forever, without settling into 
repeating blocks [Devlin, 1997]. Even earlier Kepler saw a 
fundamental mathematical connection between symmetric 
patterns and ‘space filling geometric figures’ such as his own 
discovery, the rhombic dodecahedron, a figure having 12 
identical faces [Devlin, 1997]. The quasiperiodic Penrose tiling 
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pattern has five-fold symmetry of the dodecahedron. Recent 
studies [Seife, 1998] show that in a strong magnetic field, 
electrons swirl around magnetic field lines, creating a vortex. 
Under right conditions, a vortex can couple to an electron, acting 
as a single unit. Vortex geometrical structure is ubiquitous in 
macro-scale as well as microscopic subatomic dynamical 
fluctuation patterns. 

(b) Conventional continuous periodogram power spectral analyses of 
such spiral trajectories in Figure 2 (RoR1R2R3R4R5) will reveal a 
continuum of periodicities with progressive increase dθ in phase 
angle θ (theta) as shown in Figure 3. 

(c) The broadband power spectrum will have embedded dominant 
wavebands (RoOR1, R1OR2, R2OR3, R3OR4, R4OR5, etc.) the 
bandwidth increasing with period length (Figure 2). The peak 
periods En in the dominant wavebands is be given by the relation 

 

Figure 2: The quasiperiodic 
Penrose tiling pattern with five-fold 
symmetry traced by the small eddy 
circulations internal to dominant 
large eddy circulation in turbulent 
fluid flows. 
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 En = Ts (2 + τ)τ n (4) 

where τ is the golden mean equal to (1+√5)/2 [approximately 
equal to 1.618] and Ts , the primary perturbation time period, for 
example, is the annual cycle (summer to winter) of solar heating 
in a study of atmospheric interannual variability. The peak periods 
En are superimposed on a continuum background. For example, 
the most striking feature in climate variability on all time scales is 
the presence of sharp peaks superimposed on a continuous 
background [Ghil, 1994]. 

(d) The ratio r/R also represents the increment dθ in phase angle θ 
(Equation 3 and Figure 3) and therefore the phase angle θ 
represents the variance [Mary Selvam, 1990]. Hence, when the 
logarithmic spiral is resolved as an eddy continuum in 
conventional spectral analysis, the increment in wavelength is 
concomitant with increase in phase. The angular turning, in turn, 
is directly proportional to the variance (Equation 3). Such a result 

 

Figure 3: The equiangular 
logarithmic spiral given by 
(R/r) =exp(αθ) where α and θ 
are each equal to 1/z for each 
length step growth. The eddy 
length scale ratio z is equal to 
R/r. The crossing angle α is 
equal to the small increment 
dθ in the phase angle θ. 
Traditional power spectrum 
analysis will resolve such a 
spiral flow trajectory as a 
continuum of eddies with 
progressive increase dθ in 
phase angle θ. 
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that increments in wavelength and phase angle are related is 
observed in quantum systems and has been named ‘Berry’s 
phase’ [Berry, 1988]. The relationship of angular turning of the 
spiral to intensity of fluctuations is seen in the tight coiling of the 
hurricane spiral cloud systems. 

(e) The overall logarithmic spiral flow structure is given by the 
relation 

 log
w

W z
k

∗=  (5) 

where the constant k is the steady state fractional volume dilution 
of large eddy by inherent turbulent eddy fluctuations. The 
constant k is equal to 1/τ 2(≈ 0.382) and is identified as the 
universal constant for deterministic chaos in fluid flows [Mary 
Selvam, 1990]. Since k is less than half, the mixing with 
environmental air does not erase the signature of the dominant 
large eddy, but helps to retain its identity as a stable self-
sustaining soliton-like structure. The mixing of environmental air 
assists in the upward and outward growth of the large eddy. The 
steady state emergence of fractal structures is therefore equal to 

 1/k ≈ 2.62 (6) 
Logarithmic wind profile relationship such as Equation 5 is a long-

established (observational) feature of atmospheric flows in the 
boundary layer, the constant k, called the Von Karman ‘s constant has 
the value equal to 0.38 as determined from observations [Wallace and 
Hobbs, 1977]. In Equation 5, W represents the standard deviation of 
eddy fluctuations, since W is computed as the instantaneous r.m.s. 
(root mean square) eddy perturbation amplitude with reference to the 
earlier step of eddy growth. For two successive stages of eddy growth 
starting from primary perturbation w∗ the ratio of the standard 
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deviations Wn+1 and Wn is given from Equation 5 as (n+1)/n. 
Denoting by σ the standard deviation of eddy fluctuations at the 
reference level (n=1) the standard deviations of eddy fluctuations for 
successive stages of eddy growth are given as integer multiple of σ, 
i.e., σ, 2σ, 3σ, etc. and correspond respectively to 
 statistical normalized standard deviation t = 0,1,2,3, etc. (7) 

The conventional power spectrum plotted as the variance versus 
the frequency in log-log scale will now represent the eddy probability 
density on logarithmic scale versus the standard deviation of the eddy 
fluctuations on linear scale since the logarithm of the eddy 
wavelength represents the standard deviation, i.e., the r.m.s. value of 
eddy fluctuations (Equation 5). The r.m.s. value of eddy fluctuations 
can be represented in terms of statistical normal distribution as 
follows. A normalized standard deviation t = 0 corresponds to 
cumulative percentage probability density equal to 50 for the mean 
value of the distribution. Since the logarithm of the wavelength 
represents the r.m.s. value of eddy fluctuation the normalized standard 
deviation t is defined for the eddy energy as 
 T = (log L/log T50 ) – 1 (8) 
where L is the period in units of time or space scale used in the 
analyses and T50 is the period up to which the cumulative percentage 
contribution to total variance is equal to 50 and t = 0. The variable 
logT50 also represents the mean value for the r.m.s. eddy fluctuations 
and is consistent with the concept of the mean level represented by 
r.m.s. eddy fluctuations. Spectra of time series of any dynamical 
system, for example, meteorological parameters when plotted as 
cumulative percentage contribution to total variance versus t should 
follow the model predicted universal spectrum. The literature shows 
many examples of spectra of pressure, wind and temperature whose 
shapes display a remarkable degree of universality [Canavero and 
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Einaudi, 1987]. The theoretical basis for formulation of the universal 
spectrum is based on the Central Limit Theorem in Statistics, namely, 
if an overall random variable is the sum of very many elementary 
random variables, each having its own arbitrary distribution law, but 
all of them being small, then the distribution of the overall random 
variable is Gaussian [Ruhla, 1992]. Therefore, when the spectra of 
space-time fluctuations of dynamical systems are plotted in the above 
fashion, they tend to closely (not exactly) follow cumulative normal 
distribution. 

The period T50 up to which the cumulative percentage contribution 
to total variance is equal to 50 is computed from model concepts as 
follows. The power spectrum, when plotted as normalized standard 
deviation t versus cumulative percentage contribution to total variance 
represents the statistical normal distribution (Equation 8), i.e., the 
variance represents the probability density. The normalized standard 
deviation value 0 corresponds to cumulative percentage probability 
density P equal to 50 from statistical normal distribution 
characteristics. Since t represents the eddy growth step n (Equation 7), 
the dominant period T50 up to which the cumulative percentage 
contribution to total variance is equal to 50 is obtained from Equation 
4 for value of n equal to 0. In the present study of periodicities in 
prime number spacing intervals, the primary perturbation time period 
Ts is equal to the unit number class interval (spacing interval between 
adjacent primes) and T50 is obtained as 

T50 = (2 + τ)τ 0  ∼ 3.6 spacing interval between two adjacent primes(9) 
Prime numbers with spacing intervals up to 3.6 or approximately 4 

contribute up to 50% to the total variance. This model prediction is in 
agreement with computed value of T50 (Section 3.3). 

2.2 Applications of model concepts to prime number 
distribution 
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The incorporation of Fibonacci mathematical series, representative of 
ramified bifurcations, indicates ordered growth of fractal patterns 
(Stewart, 1992). The fractal patterns are shown to result from the 
cumulative integration of enclosed small-scale fluctuations (Selvam 
and Suvarna Fadnavis, 1998). By analogy it follows that the 
continuum number field when computed as the integrated mean over 
successively larger discrete domains, also follows the quasiperiodic 
Penrose tiling pattern. 

It is shown in the following that the steady state emergence of 
progressively larger fractal structures incorporate unique primary 
perturbation domains of progressively increasing total number equal 
to z/ln z where z, the length step growth stage is equal to the length 
scale ratio of large eddy to turbulent eddy. 

In number theory, prime numbers are unique numbers and the  
prime number theorem (PNT) states that z/ln z gives approximately 
the number of primes less than or equal to z [Rose, 1995]. 
Historically, the PNT was postulated just before 1800 by both 
Legendre (1798) and Gauss (1791 in a personal communication) on 
numerical evidence and it was finally established by Hadamard and 
(independently) de la Vallee Poussin in 1896. The PNT states that if 
π(z) is the number of primes p which satisfy 2 <= p <= z then π(z) is 
approximately equal to z/ln z where ln represents the natural 
logarithm (Rose, 1995; Allenby and Redfern, 1989). 

The cell dynamical system model for turbulent fluid flows predicts, 
as explained in the following, that the function z/ln z represents the 
normalized cumulative variance spectrum of the eddies and this 
spectrum follows statistical normal distribution. 

The important result of the study is that the prime number 
spectrum is the same as the eddy energy spectrum for quantum-like 
chaos in atmospheric flows and the spectra follow the universal 
inverse power-law form of the statistical normal distribution. 
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The cell dynamical model concepts and its application to the 
evolution of prime number spectrum is explained in the following. 

Large eddies are envelopes of enclosed turbulent eddy circulations, 
the relationship between root mean square (r.m.s.) circulation speeds 
W and w∗ respectively of large and turbulent eddies of respective radii 
R and r is given as (Equation 3). 

 22 2 r
W w

Rπ ∗=  

In number field domain, the above equation can be visualized as 
follows. The r.m.s. circulation speeds W and w∗ are equivalent to units 
of computations of respective yardstick lengths R and r. Spatial 
integration of w∗ units of a finite yardstick length r, i.e., a 
computational domain w∗r, results in a larger computational domain 
WR [Mary Selvam, 1993]. The computed domain WR is larger than 
the primary domain w∗r because of uncertainty in the length 
measurement using a finite yardstick length r, which should be 
infinitesimally small in an ideal measurement. The continuum 
number field domain (Cartesian co-ordinates) may therefore be 
obtained from successive integration of enclosed finite number fie ld 
domains (Mary Selvam, 1993) as shown in Figure 1. 

Cartesian co-ordinates represent the complex number field. 
Historically, Gauss (1799) clearly regarded a complex number as a 
pair of real numbers. The idea was originally stated in a little known 
work of a Danish surveyor Wessel (1797) and later by Gauss. In 
1806, the French mathematician Argand described a complex number 
x + iy as a point in the plane and this description was given the name 
‘Argand Diagram’ [Stewart and Tall, 1990]. 

The above visualization (Figure 1) will help apply concepts 
developed for continuum atmospheric flow dynamics to evolution of 



 Apeiron, Vol. 8, No. 3, July 2001 43 

© 2001 C. Roy Keys Inc. 

unique structures such as the distribution of prime numbers in real 
number field continuum, as explained in the following. 

Fractal structures emerge in atmospheric flows because of mixing 
of environmental air into the large eddy volume by inherent turbulent 
eddy fluctuations. The steady state emergence of fractal structures A 
is equal to [Selvam and Suvarna Fadnavis, 1999a; b] 

 W R
A

w r∗

=   

The spatial integration of enclosed turbulent eddy circulations as 
given in Equation (3) represents an overall logarithmic spiral flow 
trajectory with the quasiperiodic Penrose tiling pattern (Figure 2) for 
the internal structure [Selvam and Suvarna Fadnavis, 1999a; b] and is 
equivalent to a hierarchy of vortices (Section 2 above). The 
incorporation of Fibonacci mathematical series, representative of 
ramified bifurcations indicates ordered growth of fractal patterns and 
signifies non-local connections characteristic of quantum-like chaos. 
By analogy, the means of ensembles of successively larger number 
field domains follow a logarithmic spiral trajectory with the 
quasiperiodic Penrose tiling pattern (Figure 2) for the internal 
structure. 

 log
w

W z
k

∗=   

where z is equal to the eddy length scale ratio R/r and k is equal to the 
steady state fractional volume dilution of large eddy by turbulent eddy 
fluctuations and is given as 

 
w r

k
W R

∗=  (10) 

The steady state emergence of fractal structure A is 
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W R W z

A
w r w∗ ∗

= =  (11) 

The outward and upward growing large eddy carries only a fraction f 
of the primary perturbation equal to 

 
W r

f
w R∗

=   

because the fractional outward mass flux of primary perturbation 
equal to W/w∗ occurs in the fractional turbulent eddy cross-section 
r/R. 

 
ln z

f
k z

=  from equation (5) 

 
ln z W z
z w∗

 
=  

 
 from equation (10) 

 
ln 2z

z
z zπ

=  from equation (3) 

Therefore 

 
2

lnf z
zπ

=  (12) 

In atmospheric flows a fraction equal to f of surface air is 
transported upward to level z and represents the upward transport of 
moisture, which condenses as liquid water content in clouds, and also 
aerosols of surface origin. The observed vertical profile of liquid 
water content inside clouds is found to follow the f distribution [Mary 
Selvam and Ramachandra Murty, 1985; Mary Selvam, 1990]. The 
vertical profile of aerosol concentration in the atmosphere also 
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follows the f distribution [Sikka et al., 1988]. The fraction f carries the 
unique signature of surface air (primary perturbation) at the level z. 

The f distribution represents, at level z, the signature of unique 
primary perturbation originating from the underlying substratum. The 
f distribution therefore corresponds to the cumulative prime number 
density distribution corresponding to number z. 

Therefore the ratio P equal to A/f gives the number of units of the 
unique domain of surface air at level z. 

 
ln

A z
P

f z
= =  (13) 

In number theory, the Prime Number Theorem states that z/ln z 
where ln is the natural logarithm, represents approximately the 
number of primes less than or equal to z. Prime numbers are unique 
numbers, i.e., which cannot be factorized [Stewart, 1996]. Therefore 
P represents the cumulative unique domain lengths of the primary 
perturbation carried up to the level z. In the next Section (3.0) the 
following model predictions (Section 2.0) are verified. (a) The f 
distribution represents the actual and computed prime number density 
distribution. (b) The power spectra (variance and phase) of prime 
number distribution follow the universal and unique inverse power-
law form of the statistical normal distribution. Inverse power-law 
form for power spectra signify self-similarity or long-range 
correlations inherent to the eddy continuum. (c) The broadband eddy 
continuum exhibits dominant periodicities in close agreement with 
model predicted periodicities (Equation 4). (d) The variance and 
phase spectra follow each other closely, particularly for the dominant 
eddies, thereby exhibiting ‘Berry’s phase’ characterising quantum 
systems. 
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3. Data and Analysis 
The actual prime number tables (the first 1000 primes) were obtained 
from the web site: http://www.utm.edu/research/primes. The first 
1000 prime numbers were used for the study. The prime numbers 
were also computed using the Prime Number Theorem  proposed in 
1799 by Gauss, namely the total number of primes π(z) equal to or 
less than the number z is approximately equal to z/ln z. The computed 
prime number density distribution is equal to 1/ln z. 

The computed f distribution (Equation 12), the actual prime 
number density distribution and the computed prime number density 
distributions are shown in Figure 4. 
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Figure 4: The cumulative 
prime number (actual) 
density and the 
corresponding f 
distribution have a 
maximum approximately 
equal to 0.6 for the 
number z equal to 
2π   which represents one 
complete eddy cycle. The 
eddy length scale ratio z 
represents the phase for 
the eddy continuum 
dynamics in turbulent 
fluid flows. A complete 
dominant eddy cycle (z = 
2π) is a self-sustaining 
soliton-like structure. 
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The shape of the actual prime number density distribution is close 
to and resembles f distribution. Further, the maximum value 
(approximately equal to 0.6) for these two distributions occurs for z 
value equal to 2π. The eddy length scale ratio z represents the phase 
(Section 2) and therefore the maximum values for f and also (by 
analogy), for the prime number distributions occur for one complete 
cycle of eddy circulation. Such a closed self-sustaining circulation is 
similar to a soliton, a stable self-sustaining eddy structure. 

3.1 The Frequency Distributions of Prime numbers, f 
Distribution and the Statistical Normal Distribution 

The values of actual prime number distribution, the corresponding 
values computed using the relation z/ln z (Prime Number Theorem) 
which give the number of primes less than or equal to z and the f 
distribution follow statistical normal distribution (Selvam and 
Suvarna Fadnavis, 2001) as described in the following. The frequency 
distributions were computed in terms of the normalised standard 
deviation as explained in the following for prime number (calculated) 
distribution. The number of primes p less than z are calculated for a 
range of n values from x1 = z1 to xn = zn. The cumulative percentage 
number of primes pc is calculated as equal to (pm/pn)*100 where 
m = 1,2,...n for each class interval X = (xm + xm+1)/2. The number of 
primes pt = pm+1  – pm in each class interval X is also calculated. The 
normalized standard deviate t is then equal to (Xbar – X)/σ  where 
Xbar is the mean of the prime number distribution. The corresponding 
standard deviation of the X versus pt distribution is then calculated as 
equal to σ. 

The prime number (actual and computed) frequency distribution 
and also the corresponding f distribution for values of z from 3 to 
1000 at unit intervals are shown in Figure 5. The statistical normal 
distribution is also plotted in the Figure 5. It is seen that the prime 
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number (actual and computed) distributions and the corresponding f 
distribution closely follow statistical normal distribution. 

3.2 Spectra of prime number distribution 
In the quantum-like chaos in atmospheric flows the function z/ln z 
represents the variance spectrum of the fractal structures as shown 
below. 

The length scale ratio z equal to R/r represents the relative variance 
(Equation 3). The relative upward mass flux of primary perturbation 
equal to W/w∗ is proportional to ln z (Equation 5). Therefore z/ln z 
represents the cumulative variance normalized to upward flow of 
primary perturbation. The cumulative variance or energy spectrum of 
the eddies is therefore represented by z/ln z distribution. 
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corresponding f 
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By concept (Equation 3) large eddies are but the integrated mean 
of inherent turbulent eddies and therefore the eddy energy spectrum 
follows statistical normal distribution according to the Central Limit 
Theorem (Section 2.1(e) above). The prime number spectrum, which 
is equivalent to the variance (energy) spectrum of eddies follows 
statistical normal distribution as seen in Figure 5. Earlier studies 
using various meteorological data sets have shown that atmospheric 
eddy energy spectrum follow statistical normal distribution [Selvam 
and Suvarna Fadnavis, 1998]. 
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3.3 Power Spectral Analysis: Analyses Techniques, Data 
and Results 

The broadband power spectrum of space-time fluctuations of 
dynamical systems can be computed accurately by an elementary, but 
very powerful method of analysis developed by Jenkinson (1977) 
which provides a quasi-continuous form of the classical periodogram 
allowing systematic allocation of the total variance and degrees of 
freedom of the data series to logarithmically spaced elements of the 
frequency range (0.5, 0). The periodogram is constructed for a fixed 
set of 10000(m) periodicities Lm which increase geometrically as 
Lm = 2 exp(Cm) where C =.001 and m = 0, 1, 2,....m. The data series 
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Yt for the N data points was used. The periodogram estimates the set 
of Amcos(2πνmS – φm) where Am, νm and φm denote respectively the 
amplitude, frequency and phase angle for the mth periodicity and S is 
the time or space interval. In the present study the frequency of 
occurrence of primes in unit number class intervals ranging from 3 to 
1000 was used. The cumulative percentage contribution to total 
variance was computed starting from the high frequency side of the 
spectrum. The period T50 at which 50% contribution to total variance 
occurs is taken as reference and the normalized standard deviation tm 
values are computed as (Equation 8). 
 tm = (log Lm/log T50) – 1 
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The cumulative percentage contribution to total variance, the 
cumulative percentage normalized phase (normalized with respect to 
the total phase rotation) and the corresponding t values were 
computed. The power spectra were plotted as cumulative percentage 
contribution to total variance versus the normalized standard 
deviation t as given above. The period L is in units of number class 
interval which is equal to one in the present study. Periodicities up to 
T50 contribute up to 50% of total variance. The phase spectra were 
plotted as cumulative (%) normalized (normalized to total rotation) 
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phase. The variance and phase spectra along with statistical normal 
distribution is shown in Figure 6. The ‘goodness of fit’ between the 
variance spectrum and statistical normal distribution is significant at 
<= 5% level. The phase spectrum is close to the statistical normal 
distribution, but the ‘goodness of fit’ is not statistically significant. 
However, the ‘goodness of fit’ between variance and phase spectra 
are statistically significant (chi-square test) for individual dominant 
wavebands (Figures 7a and 7b). 

The cumulative percentage contribution to total variance and the 
cumulative (%) normalized phase (normalized w.r.t. the total rotation) 
for each dominant waveband is computed for significant wavebands 
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and shown in Figures 7a and 7b to illustrate Berry’s phase, namely 
the progressive increase in phase with increase in period and also the 
close association between phase and variance (see Section 2). 

The statistically significant (less than or equal to 5% level) 
wavebands are shown in Figure 8. 

Table 1 (see Appendix) gives the list of a total of 110 dominant 
(normalised variance greater than 1) wavebands obtained from the 
continuous periodogram analyses for the data set (prime numbers in 
the interval 3 to 1000 at unit class intervals). The symbol * indicates 
that the dominant waveband is statistically significant at <= 5% level. 
There are 14 significant dominant wavebands (Figure 8). The 
dominant peak periodicities are in close agreement with model 
predicted dominant peak periodicities, e.g., 2.2, 3.6, 5.8, 9.5, 15.3, 
24.8, 40.1, and 64.9 prime number spacing intervals for values of n 
ranging from –1 to 6 (Equation 4). The symbol S indicates that the 
normalised variance and phase spectra follow each other closely (the 
‘goodness of fit  ‘ being significant at <= 5% ) displaying Berry ‘s 
phase in the quantum-like chaos exhibited by prime number 
distribution. Earlier study by Marek Wolf (May 1996, IFTUWr 
908/96 http://rose.ift.uni.wroc.pl/~mwolf) also shows that the number 
of Twins (spacing interval 2) and primes separated by a gap of length 
4 (“cousins”) is almost the same and it determines a fractal structure 
on the set of primes. The conjecture that there should be 
approximately equal numbers of prime power pairs differing by 2 and 
by 4, but about twice as many differing by 6 is proved to be true by 
Gopalkrishna Gadiyar and Padma (1999 http://www.maths.ex.ac.uk 
/~mwatkins/zeta/padma.pdf). The dominant perodicities shown above 
at Figure 8 are consistent with these reported results. The period T50 
up to which the cumulative percentage contribution to total variance 
is equal to 50 is found to be equal to 3.242 spacing interval between 
two adjacent primes. This periodogram estimate of T50 for the prime 
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numbers in the interval 3 to 1000 is in approximate agreement with 
model predicted value of T50 approximately equal to 3.6 (Equation 9). 
The dominant significant period 2 corresponds to twin primes. In 
number theory [Rose, 1995; Beiler, 1966] the twin prime conjecture 
states that there are many pairs of primes p, q where q = p + 2. There 
are infinitely many prime pairs as z tends to infinity. 

3.4 Spiral Pattern of Prime Number Distribution in the x-
y Plane 

The zth prime is approximately equal to z ln z [Allenby and Redfern, 
1989]. In the  following it is shown that the prime numbers are 
arranged in a spiral pattern in the x-y plane. The equiangular 
logarithmic spiral shown at Figure 3 is given by the relation 

 R/r = eαθ 
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Figure 9: The spiral pattern 
traced in the x-y plane by 
the first 20 prime numbers. 



 Apeiron, Vol. 8, No. 3, July 2001 56 

© 2001 C. Roy Keys Inc. 

Since the eddy length scale ratio z is equal to R/r 

 ln z = αθ = (1/z)(1/z) 

 zln z = 1/z = r/R = dθ 
The zth prime number has an angular phase difference equal to 1/z 

radians from the earlier (z – 1)th prime. The spiral arrangement of the 
first 20 and 100 primes are shown respectively in Figures 9 and 10. 
Spiral patterns in the arrangement of prime numbers have been 
reported earlier by mathematicians (Schroeder, 1986; also shown in 
the website http://zaphod.uchicago.edu/~bryan/spiral/index.html). 

4. Conclusions 
In mathematics, Cantorian fractal space-time fluctuations is now 
associated with reference to quantum systems [Ord, 1983; Nottale, 
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Figure 10: The location in the 
x-y plane of the first 100 
prime numbers. The spiralling 
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as that seen in the familiar 
spiral patterns found in the 
arrangement of leaves on a 
stem, in florets of composite 
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on pineapple and pine cone, 
etc., 
http://xxx.lanl.gov/abs/chao-
dyn/9806001. 
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1989; El Naschie, 1993; 1998]. Recent studies indicate a close 
association between number theory in mathematics, in particular, the 
distribution of prime numbers and the chaotic orbits of excited 
quantum systems such as the hydrogen atom [Cipra, 1996; Berry, 
1992; Cipra http://www.maths.ex.ac.uk/~mwatkins/zeta/cipra.htm]. 
The spacing intervals of adjacent prime numbers exhibit fractal 
fluctuations generic to diverse dynamical systems in nature. The 
irregular (chaotic) fractal fluctuations however, exhibit self-similar 
geometry manifested as inverse power-law form for power spectra. 
Self-similar fluctuations imply long-range correlations or non- local 
connections identified as self-organized criticality. A cell dynamical 
system model for atmospheric flows developed by the author shows 
that self-organized criticality is a signature of quantum-like chaos. 
The cell dynamical system model is a general systems theory 
applicable to all dynamical systems in nature. The model concepts 
show that quantum-like chaos in dynamical systems incorporates 
prime number distribution functions in the quantification of self-
organized criticality. The model also provides unique quantification 
for the observed self-organized criticality in terms of the universal 
statistical normal distribution. 

The important result of the present study is that power spectra of 
different data sets of spacing intervals of adjacent prime numbers 
follow the model predicted universal inverse power-law form of the 
statistical normal distribution, a signature of self-organized criticality. 
The prime number distribution therefore exhibits quantum-like chaos. 
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Appendix 

Table 1: The list of a total of 110 dominant (normalised variance 
greater than 1) wavebands obtained from the continuous periodogram 
analyses for the data set (prime numbers in the interval 3 to 1000 at 
unit class intervals) 

Periodicities in unit number class intervals 
No Peak 

period 
Wave band 

1 2.000 2.000 to 2.006 * 

2 2.010 2.010..to..2.010 * 

3 2.014 2.014..to..2.014 

4 2.022 2.022..to..2.022 

5 2.034 2.034..to..2.034 

6 2.077 2.077..to..2.077 

7 2.100 2.098..to..2.100 

8 2.113 2.113..to..2.113 

9 2.136 2.136..to..2.136 

10 2.143 2.141..to..2.145 

11 2.149 2.149..to..2.149 

12 2.164 2.164..to..2.164 

13 2.199 2.197..to..2.199 

14 2.235 2.235..to..2.235 

15 2.266 2.264..to..2.266 

16 2.307 2.305..to..2.310 

17 2.333 2.331..to..2.335 * 

18 2.356 2.356..to..2.356 

19 2.364 2.364..to..2.366 

20 2.445 2.443..to..2.448 
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21 2.467 2.467..to..2.470 

22 2.500 2.497..to..2.505 * 

23 2.615 2.615..to..2.617 

24 2.625 2.623..to..2.628 

25 2.657 2.654..to..2.657 

26 2.711 2.708..to..2.711 

27 2.727 2.724..to..2.730 

28 2.749 2.746..to..2.752 

29 2.801 2.796..to..2.804 * 

30 2.890 2.890..to..2.890 

31 2.925 2.925..to..2.925 

32 2.936 2.933..to..2.936 

33 2.969 2.969..to..2.969 

34 2.999 2.987..to..3.014 * 

35 3.023 3.023..to..3.023 

36 3.050 3.047..to..3.050 

37 3.143 3.143..to..3.146 

38 3.252 3.252..to..3.252 

39 3.288 3.288..to..3.288 

40 3.297 3.294..to..3.301 

41 3.334 3.327..to..3.341 * 

42 3.347 3.347..to..3.351 

43 3.361 3.361..to..3.364 

44 3.456 3.442..to..3.456 

45 3.470 3.470..to..3.473 

46 3.498 3.491.to..3.505 *S 

47 3.537 3.537.to..3.540 

48 3.558 3.558..to..3.558 

49 3.666 3.663..to..3.670 

50 3.688 3.685..to..3.688 

51 3.714 3.707..to..3.722 
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52 3.748 3.744..to..3.755 

53 3.782 3.778..to..3.782 

54 3.820 3.816..to..3.823 

55 3.881 3.881..to..3.881 

56 4.125 4.125..to..4.125 

57 4.200 4.196..to..4.204 

58 4.247 4.242..to..4.247 

59 4.285 4.281..to..4.294 

60 4.333 4.320..to..4.346 S 

61 4.372 4.367..to..4.376 

62 4.402 4.394..to..4.407 

63 4.568 4.568..to..4.568 

64 4.600 4.596..to..4.605 

65 4.670 4.656..to..4.679 * 

66 4.717 4.717..to..4.722 

67 4.750 4.745..to..4.760 

68 4.774 4.769..to..4.779 

69 4.939 4.934..to..4.944 

70 4.964 4.964..to..4.969 

71 4.999 4.984..to..5.014 * S 

72 5.034 5.034..to..5.034 

73 5.084 5.074..to..5.094 

74 5.161 5.161..to..5.161 

75 5.197 5.192..to..5.197 

76 5.250 5.250..to..5.250 

77 5.497 5.491..to..5.502 

78 5.813 5.802..to..5.819 

79 5.913 5.907..to..5.919 

80 5.949 5.943..to..5.960 

81 6.002 5.972..to..6.026 *S 

82 6.051 6.044..to..6.057 
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83 6.087 6.081..to..6.087 

84 6.124 6.124..to..6.130 

85 6.279 6.272..to..6.285 

86 6.329 6.323..to..6.329 

87 6.496 6.489..to..6.502 

88 6.995 6.974..to..7.023 * 

89 7.346 7.324..to..7.361 

90 7.509 7.472..to..7.539 S 

91 7.638 7.615..to..7.653 

92 8.102 8.086..to..8.119 

93 8.399 8.366..to..8.425 

94 8.501 8.484..to..8.526 

95 9.986 9.926..to..10.066 * S 

96 10.540 10.508..to..10.571 

97 10.981 10.915..to..11.036 

98 12.977 12.912..to..13.029 S 

99 13.212 13.212..to..13.226 

100 14.001 13.876..to..14.128 * S 

101 15.031 14.897..to..15.152 S 

102 15.458 15.412..to..15.505 

103 17.050 16.948..to..17.153 S 

104 22.113 21.871..to..22.335 S 

105 28.793 28.450..to..29.025 S 

106 29.998 29.581..to..30.452 S 

107 31.223 31.192..to..31.254 

108 42.020 41.353..to..42.655 S 

109 198.57 192.702..to..204.414 S 

110 1534.7 965.984..to..3402.097 S 

 


