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Cosmological Object’s
Redshift into its Gravitational
and Distance Parts
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The Hubble Telescope should make it possible to separate the
redshift of light from any cosmological object into that
redshift due to the gravitational potential difference between
the emission and reception points and that portion due the
distance between these points by comparing the redshifts
measured on the Earth’s surface to redshifts measured by the
Hubble Telescope. This would alow a remapping of the
cosmological objects and an increased understanding of
gravitational conditions of these objects.
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Introduction

n 1911 Einstein used time dilation in the Special Theory of
I Relativity to predict that the atomic spectra lines should be

shifted towards the red end of the color spectrum [1]. This
prediction has since been verified by experiment using both solar and
terrestrial gravitational potential differences [2-5]. Hubble measured
the redshift of numerous stars and gaaxies and noted that these
displayed an amost direct relationship between the redshift and the
cosmological distance of the radiating object from the Earth [6].
These experimental findings were later supported by solutions to
Einstein's General Relativistic field equations, such as the Robertson
Walker solution [7]. However, these experimental and theoretical
consderations provide no way to sort out how much of the
cosmological object’s redshift is due to the gravitationa potentia
difference between the emitting object and the Earth and how much is
due solely to the distance between them.

There exists a new theory, caled the Dynamic Theory [8-14],
which predicts significant differences between the redshifts that are
measured on the Earth’ s surface and those that should be measured by
the Hubble Telescope in its orbit. Further, the manner of the
prediction is such that comparison of the redshifts measured at the
Earth’s surface and by the Hubble Telescope sets up two equations in
the two unknowns, the cosmological distance to the object and its
gravitational potential.

To display how the new predictions differ from the old let's first
look a the old predictions. Eingtein's gravitational potential
difference redshift is given by
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where the subscripts e and r denote the emitting and receiving
gravitationa potentials. The redshift due to the cosmological distance
isthe linear relation

Z= iL,
Cc
where H is Hubble's constant and L is the cosmologica distance

between the emitting object and the Earth. By adding these two
redshift predictions we find

Gé O H
2= =M Meh 2, (1)
cCéR Rel C

which shows that the only difference this prediction would have
between measurements at the Earth’s surface and by the Hubble
Telescope would come from the change in the difference in the
gravitationa potential of reception due to the orbital height of the
telescope. However, because of the smal size of the Earth in
comparison to the cosmological objects this difference would be
negligible. For example, for the Sun this effect is some 107 percent.
For objects larger than the Sun the difference is even less.

The Dynamic Theory is based upon the laws of classicd
thermodynamics and it has been shown that these fundamental laws
require Eingtein’ s postulate of the constancy of the speed of light [13].
Given this result it is no surprise that Einstein’s specia theory of
relativity quickly follows. What is less obvious, but also required, is
that these basic laws provide a description of physical phenomenain
five dimensions of space, time and mass [14]. We shdl now provide a
brief outline of the theoretica background leading to the redshifts
prediction within this new theory starting be stating the adopted laws.

© 2001 C. Roy Keys Inc.



Apeiron, Vol. 8, No. 2, April 2001 87
First Law (Conservation of Energy)

The concept of conservation of energy is fundamental to al branches
of physics and is the beginning of thermodynamics and mechanics
[8,10,12,13]. In terms of generdized coordinates or independent
variables, the notion of work, or mechanical energy, is considered
linear forms of the type

dW: Fi(qll"'lqnluli-'-aun)dqi (I = 1,2,...,”),
where the forces F; may be functions of the velocities (dq//dt = U) as
well as the coordinates ' and the summation convention is used.
A system may acquire energy by other means in addition to the
work terms, such energy acquisition is denoted eE. The system

energy, which represents the energy possessed by the system, is
considered to be

U(ql,...,qn,ul,...,u”).
With these concepts, then the First Law, which is the generdized
Law of Conservation of Energy, has the form
gE=dU-ew=dU- Fdq' (i=1..,n).

In the First Law the dimensiondity isn + 1 and is determined by the
system considered.

Second Law

The statement of the Second Law is made using the axiomatic
statement provided by the Greek mathemetician Carathéodory [15]
who presented an axiomatic development of the Second Law of
thermodynamics that may be applied to a system of any number of
variables. The Second Law may then be stated as follows:
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In the neighborhood (however close) of any equilibrium
state of a system of any number of dynamic coordinates,
there exist states that cannot be reached by reversible E—
conservative (elE = 0) processes or motions.

Results of the Second Law

The Second Law requires that an integrating denominator must exist
for the First Law and that this integrating factor must be a function of
velocity only for mechanica systems. Using the integrating
denominator the expression for the First Law may be written

dE
— = S .
) f(s)ds
Since f(s)ds is an exact differentia, the quantity 1/f (u) is an
integrating denominator for €k .
The universa character of f (u) makes it possible to define an

absolute speed in the same manner as is done in thermodynamics
when defining the absolute temperature. The definition of the absolute
speed requires congtant speed motions be considered. All Galilean
frames of reference will display this process as one of constant speed.
Further, if al reference frames are to be of equa status then observers
in al Galilean reference frames must share the éE =0 constant speed
motion equivaently. Furthermore, each observer will have the same
vaue for the absolute speed or else one of the frames will enjoy a
privileged nature. Then the absolute speed is unique for all Galilean
frames of reference. There is one such speed adready known and that
gpeed is the speed of light, c. Therefore, the absolute speed must be
the speed of light and the same for dl Gdilean observers. This is
Eingein's postulate. Thus, the first two laws require Eingtein's
postul ate concerning the speed of light.
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Apeiron, Vol. 8, No. 2, April 2001 89

Since s is an actud function of u and g, the right-hand member is
an exact differential, which may be denoted by dS; and where Sis the
mechanica entropy of the system.

g = &
)

Geometry

With the above laws and the definition of the entropy an expression
for the generdized Clausius inequdity may be written and used to
specify the stability condition
dU- g,Dg' -fdS>0.
which leads to the quadratic form
(ds)* =h,dq'dg’; j,k =0L2,...n,whereq’ = S/ F,
and
1°U
1d9d
The dement of arc length may be parameterized using the locd time
as ds = cdt . However, Clausius Inequality does not lead to a single
variational principal on time rather it leads to two variationa
principals, one requiring the minimization of Free Energy and one
requiring the maximization of the entropy for isolated systems for
which dE = 0. The differentia of the entropy is on the right hand
sde of this quadratic form so that the form must be solved for the

differentiad expresson of entropy in order to use the entropy
variationd principal. When this is done we find that

(ca)’ = f(Cd? + 2, oo k- b, i )= (k)%
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This shows the requirement for two metric spaces coupled by a gauge
function, f. Since the Second Law requires that the entropy is a totd
derivative one may suspect that the entropy space will be an
integrable space and this is indeed the case when the Second Law is
applied to the metric coefficients. In addition, one finds that the
second space, which we might call an energy space because of the tie
to the First Law, must be a Weyl space. Therefore, we find that the
gauge function acts as a geometrical integrating factor coupling the
non-integrable Energy space to the integrable entropy space.

The appearance of Weyl character of the Energy space alows the
use of London’swork that shows that null trgjectoriesin a Weyl space
must be described by the equations of quantum mechanics [16]. In the
Dynamic Theory, the necessity of considering null trgjectories comes
in a very natura way. For instance, in thermodynamics the desire to
consder stable states would cause one to look for isentropic states.
Thisis of course a null trgectory in the entropy space, however, for
non-zero gauge functions this condition is aso a null trgectory in the
energy, Weyl, space. By the Second Law the differentid change of
entropy can never be negative for an isolated system so that dg° 3 0.
Therefore, the entropy metric is positive definite. For negative gauge
functions the energy space will be negative definite and, therefore,
complex. There are an infinite number of null trgectories for a
complex space and these are given by the quantum dates.

This may be more easily seen by considering the displacement of
the element of arc length in the energy space that must take on the
Weyl displacement form of

dde) = f dg"(de)

where the f, are the gauge potentials and are the logarithmic
derivative of the square root of the gauge function. Then the
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isentropic condition that the integral of Equation (10) require that
(de) = (de), and, therefore, so that

edjdqj - 1
and
of dof = 2piN .
This is the quantum condition that London used to derive
Schrodinger’s equations of quantum nechanics. Here the quantum
condition is required by the isentropic state specification.

When one first begins to study the thermodynamics of steam
systems one writes the First Law as
gE =dU + Pdv- F,dx,,a =1,23. The right hand sde of this
datement of the First Law contains five unknown variables. The
accepted method of reducing the number of unknowns is to, firgt,
date that the mass density can always be written as a function of
gpace and time thereby reducing the number of additiona
independent equations needed to four. These four equations are
pointed out to be an equation of state and the three mechanical laws
of motion from Newtonian physics.

The procedure outlined above for obtaining the equations of the
metrics may aso be used in five dimensions and then the dependence
or independence of the mass dendity upon space and time may be
determined as the predicted phenomena agree or disagree with
experience. This leads one to a five dimensional entropy metric of
gpace-time-mass. Here aso one finds the appearance of the two
spaces coupled by a gauge function for an isolated system. In this
case the gauge function is afunction of the same five variables.

The Dynamic Theory makes its prediction of redshifts starting
from this five-dimensional geometry of space-time-mass in which the
gauge function produces the fields. This gauge function is a function
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of space, time, and mass and it determines the unit of action in the
atomic states as may be seen from the Quantum Poisson brackets
when covariant differentiation is used, or

_ & 1 joud
[P =ing el +1 yxCaY
e Is If\; 9]

where the vector curvature would appear in the Christoffel symbols
insde the brackets while the gauge function is a multiplicative factor
in the d. Then when the vector curvature is negligible the Quantum
Poisson brackets become [xi,kaY = inf d*Y where it may be seen
that the unit of action is Dirac d times the gauge function. It may be
shown [12] by using the gauge field equations that the functional
form of the gauge function must be
_ __lgk(a+bt)My LU

f = exp% g_Rﬂe Rg.
By requiring the photon energy to be conserved we have
hf v, = hf,v, which produces the redshift expression

Di i éM,(a+pt;) 1. Meo(a+pte) Lell
z= :e(pl,kéM( bt)eRI_M( bt)eRe:,_L

| e 1 e R Re Ul
By expanding the right-hand side as a power series and comparing the
first order approximation to the classical expresson in Egn. (1) the
condants k, a, and b may be evauated. By setting t, =0 and

t. = L/c wefind our redshift expression becomes

I | ¢ -k =u 0!
D e GoaM.e ® MR aHL okr:
Zzl—:eXplg 2 ) a* %:"0 -1
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where M/Ris the gravitational potentia at either the point of emission
or the point of reception and the subscript e stands for emission while
the subscript r stands for reception. The Rand M without subscripts
are the values of the radius and mass of the Earth respectively.
Because of the distances involved the approximation | << R may be
used for both the emitter and the receiver. Then the approximation of
Eqgn (2) becomes

3

In(z+1) @- &

so that on the Earth’ s surface we would have the approximation

G éMm U, el
In(zes+ 1) @- 2 eﬁ Me gt 2 (4)
e

Reugcﬂ

while, if we were to obtain experimenta redshifts using the Hubble
Telescope whilein orbit at an orbitd height of h we would have

IN(z; +1) @ S &t - U+ () 2 ©)

Equation (4) and (5) represent two equations in the two unknowns,
L and M¢/Re. The solution of these equations is given by the equations

Ve @)gR+N)In(z +1)- RIN(zs 41 ®

and

L @{In(zs+1)- In(z,; +2)(1+5) + 24} 7)

One may then see how comparing the redshifts obtained from the

Earth’s surface with those taken at a height above it will dlow the

determination of distance to, and the gravitational potentia of, a
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cosmologica object. The ability to obtain solutions from the two
equations for redshifts at different receiving gravitationa potentias
does not exist in other predictions of redshifts. It is because of the
appearance of the ratio of gravitational potentias in Eqn (2) that
alows the Dynamic Theory to make the distance and potentia
predictions. For objects with a large gravitational potentia compared
to that of the Earth the mgjor changein In(z + 1) comes from the ratio
of hto R+ h. For an orbit height of 380 milesthisratio is 0.0876. This
means that the expected change in the measured redshift from the
Earth’'s surface to the Hubble Telescope orbit is of the order of afew
percent. A student survey of books reporting redshifts in the optical
range puts the experimental error between a few percent and near 30
percent. Therefore, care needs to be taken or frequencies sought
which have less experimental error.
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