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The controversy generated by the theory of theB(3) magnetic field is considered in the
light of a paradox raised by E. Comay and its repudiation by M.W. Evans and S. Jeffers.
Their arguments are examined and assessed.
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1. Introduction
The theory of theB(3) magnetic field originated in 1992 [Evans1992], and there is now
a voluminous literature: E. Comay [Comay1996a] cites the articles up to 1996, and four
volumes in the series entitled:The Enigmatic Photon have been published [Evans1994a,
Evans1995a, Evans1996a, Evans1998]. A recent double-issue of this journal [Evans1997]
was devoted to articles about theB(3) theory.

Several scientists have written criticisms of theB(3) theory [Comay1996a, Comay1996b,
Barron1993, Lakhtakia1993, Grimes1993, Buckingham1994a, Buckingham1994b, Rikken1995,
Akhtar1997], and rebuttals of most of these criticisms have been published [Evans1997,
Evans1993, Evans1995b, Evans1996b]. A continuing controversy is manifest; the Edito-
rial in [Evans1997, pp.35-36] presents a synopsis of the controversy.

Controversies in science are best resolved by reasoning supported by experimental ev-
idence. The experiments of Rikken [Rikken1995] and Akhtar Raja [Akhtar1997] were
designed to detect and measure the longitudinal magnetic field of circularly polarized ra-
diation predicted by theB(3) theory; i.e. predicted by formula (5) of [Evans1992, p.238]
(quoted as formula (4) of [Akhtar1997]). The experiments have not confirmed the existence
of the I1/2 andI3/2 terms in this formula. Nevertheless a rebuttal of Rikken’s inference
thatB(3) is not physical [Evans1997, p.35] has been published, as has a similar rebuttal of
the experiments of Akhtar Raja,et al, [Evans1997, p.94].

Casual observers of the continuing controversy may be confounded, for the essence of
the scientific method is to put all ideas to the tests of logical consistency and confirmation
by experimental measurements. This article is intended to calibrate the credibility of the
opponents in the controversy, specifically by a detailed analysis of the validity of the para-
dox raised by E. Comay [Comay1996a] and of its subsequent repudiation [Evans1996b].

2. Comay’s Analysis
Comay’s article [Comay1996a] concludes as follows:

“It is proved here that Evans’s modified electrodynamics yields physically un-
acceptable results, thereby establishing its inconsistency with Maxwell’s equa-
tion in the vacuum∇×B = ∂E/∂t.”
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Comay’s conclusion (quoted above) is somewhat ambiguous, because his inference of
“physically unacceptable results”employedthe Maxwell equation∇×B = ∂E/∂t in the
latter steps of his analysis (as explained below), and one aspect of theB(3) theory is that
Maxwell’s equations should be modified by the addition (to two of them) of a mass term
−ξ2A to produce [Evans1994a, eqn.(243),p.124]:

∇×B = ∂E/∂t− ξ2A

where the mass is believed to be “of the order of10−51 kgm” as stated below eqn.(243) on
page 124 of [Evans1994a]. This consideration leads to the inference that all that Comay
proved was that theB(3) concept is inconsistent with Maxwell’s electrodynamics (in par-
ticular with the equation∇ × B = ∂E/∂t), and since this inconsistency was already an
established part of theB(3) theory, Comay’s inference of “physically unacceptable results”
was not proven.

However, whether this tiny mass term is an essential part of theB(3) theory is itself
ambiguous, for this same source [Evans1994a] contains statements such as:

“... the three field componentsB(1), B(2) andB(3) obey the Maxwell equa-
tions in free space”[Evans1994a, p.71]

This statement (and similar statements elsewhere) justified Comay in employing the
unmodified Maxwell equation to deduce “physically unacceptable results”. Furthermore,
the argument that it was Comay’s use of the unmodified Maxwell equation that invalidated
his analysis, was not employed in the subsequent rebuttal [Evans1996b], and since this ar-
ticle is primarily concerned with the credibility of Comay’s analysisvis a visits subsequent
repudiation [Evans1996b] (i.e. theB(3) field controversy), this ambiguity in the import of
Comay’s result is peripheral to what follows.

2.1 The Scenario

Comay reached his conclusion (quoted above) by considering the radiation from a rotating
electric dipole. He begins his analysis by quoting Evans’s definition of theB(3) magnetic
field (Comay’s equation (1)). He also quotes 3 assertions that recur in the literature of the
B(3) field:

(A) A circularly polarized electromagnetic wave has an additional magnetic fieldB(3)

which is parallel (or antiparallel) to the wave’s propagation. The amplitude of this
field is proportional to that of the transverse magnetic field, but unlike the latter, it is
independent of the angular frequencyω (see Ref.[12], p. 69≡ [Evans1994b, p.69]).

(B) The longitudinal magnetic fieldB(3) vanishes if the wave is linearly polarized (see
Ref.[28], item (g) on p. 568≡ [Evans1995b, p.568]).

(C) The magnetic fieldB(3) is not associated with any real electric field (see Refs.[12],
pp. 69 and 70; [24], etc.≡ [Evans1994b, Evans1994c]).

Comay uses assertions (A) and (B) to evaluate the line integral of the magnetic field around
a closed path (PQRSP ) in the radiation field which he defines as follows (see Figs.1 and
2 in [Comay1996a]):

• PQ is on the axis of rotation of the rotating dipole (chosen to be thez-axis). It is
a straight line directed radially outwards whose length is chosen to be equal to the
wavelength of the radiation.
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• SR is a straight line segment of thex-axis whose length is also one wavelength.
Thus it lies in the plane of rotation of the dipole. It is (likePQ) radial, but directed
inwards.

• QR andSP are quarter-circle arcs of concentric circles whose center is at the center
of the rotating dipole;i.e. the origin of coordinates:x=y=z=0. The radial distance
between the two circular arcs is one wavelength everywhere.

The radius of the circular arcs is chosen to be large compared with the length of the dipole
(i.e. the distance separating the two charges of the rotating electric dipole). This ensures
that the entire pathPQRSP lies within the far field of the radiation emanating from the
rotating dipole. This far field region of space is known as theradiation zone, its salient
property being that the direction of propagation of the radiation is radially outwards every-
where. Comay cites Landau and Lifshitz [Landau1975] in support of this radially directed
propagation in the far field (Comay’s Ref.1); another analysis reaching the same conclusion
is given in the book by Wangsness [Wangsness1979, pp.517-521].
Analysis of the radiation from a rotating dipole also leads to the inferences:

1. the radiation is circularly polarized along the axis of rotation (thez axis),

2. it is linearly (plane) polarized in the plane of rotation (thex-y plane),

3. at intermediate directions it is elliptically polarized.

These inferences derive from the time-varying electric field of the rotating dipole:

1. along its axis,

2. within its plane, and

3. at intermediate angles.

Comay proceeds to qualitatively compute the line integral of the magnetic field around the
closed pathPQRSP :1

• Using theB(3) theory assertion (A) (quoted above) he notes thatB(3) makes a non-
zero contribution to the integral alongPQ becausePQ is parallel to the direction of
propagation (the scalar product is the product of the magnitudes sincecos(0) = 1),
and because the radiation is circularly polarized alongPQ (thez axis).

• Along the arcsQR andSP B(3) makes no contribution to the integral because these
path-segments are perpendicular to the direction of propagation, and hence the scalar
product is zero (cos(π/2) = 0).

• Using theB(3) theory assertion (B) (quoted above) he infers that the radial segment
RS (along thex axis) makes no contribution to the integral because although the
scalar product is not zero (cos(π) = −1), the radiation is linearly polarized along
RS and henceB(3) = 0.

1The integrand of aline integral is the scalar product of the vector field being integrated, with the element of
the directedline segment.
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• The transverse components of the magnetic field do not contribute to the line integral
along the radial segments because these segments are perpendicular to the transverse
direction (and hence the scalar product is zero).

• The transverse contributions to the integral are not zero along the circular arcsQR
andSP , but Comay has cleverly chosen them to be a wavelength apart (the length of
PQ andRS), which allows him to argue that these non-zero transverse contributions
to the integral are equal in magnitude and opposite in sign; the opposite sign arises
from the scalar product:cos(0) = 1 alongQR andcos(π) = −1 alongSP .

The equality of the magnitudes arises because being a wavelength apart they are in
phase, and although the arcSP is shorter thanQR (because the latter is on a larger
circle), the amplitude of the radiation field is reduced by the same ratio; hence the
cancellation is exact.

Thus the line integral of the entire magnetic field around the closed pathL ≡ PQRSP is
shown to be non-zero because of the contribution ofB(3) along the radial segmentPQ.

Having established that the line integral is not zero, Comay uses Stokes’s theorem to
re-express it as a surface integral over the areaA bounded by by the closed pathL:∮

L

B.dl =
∫

A

(∇×B) .ds =
∫

A

∂E
∂t

.ds =
∂

∂t

∫
A

E.ds (1)

where the R.H.S. results from Comay’s use of the Maxwell equation:

∇×B =
∂E
∂t

(2)

Since the line integral is only non-zero on account of the contribution fromB(3) alongPQ,
and since its magnitude,B(3), is independent of time, it follows that the time derivative of
the electric fieldE averaged over the surfaceA (the electricflux through the surfaceA) is
a non-zero constant. Hence the time-integral of the electric flux throughA must be a linear
function of the timet: ∫

A

E.ds = a t + b (3)

which implies thatE itself has a linear dependence upon time rather than the oscillatory
dependence of an electromagnetic wave. This non-wave electric fieldE must increase
indefinitely with the passage of time, which is, of course, contrary to the physics of a
radiation field whose intensity is stationary.

Thus Comay’s analysis concludes that the assumption thatB(3) is the longitudinal
component of the physical magnetic field in circularly polarized radiation, yields the non-
physical result of an electric field throughPQRS whose magnitude increases linearly with
time. In addition, Comay notes that this result disproves assertion (C) of theB(3) theory
(quoted above), thus making the theory self-contradictory.

The paradox was established via an apparently sound argument (summarized above),
and thus it is of prime importance because, as he says:

“one counter-example justifies a refutation of a theory.”

It is a disproof by counter-example.
While there may be other possible explanations for the paradox, the most obvious ex-

planation is that it is incorrect to regardB(3) as the longitudinal component of the physical
magnetic field;i.e.assertion (A) of theB(3) theory is incorrect.
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3. Evans-Jeffers Reply to Comay
The following analysis was conducted in December 1996 in response to a request for a
review of the proofs of [Evans1996b] by Dr. M.W. Evans; the review was communicated
to Dr. Evans on December 23, 1996.

3.1 A Matter of Attribution

The first sentence of the Reply reads as follows:

“Comay’s definition [1] of B(3) ... in his Eq.(1) uses the fact that ... B(1)xB(2)
is empirically irrotational.”

However, the definition ofB(3) given in Comay’s equation (1) is Evans’s definition, rather
than Comay’s. Comay is simply quoting it so that his readers will know precisely what
he is writing about. Furthermore, Comay’s Comment doesn’t mention anything aboutB(3)

being irrotational. These observations create the perception that the statement quoted above
falsely attributes to Comay both a definition and the use of the irrotational property.

The same false attribution of the definition occurs in the first sentence of the paragraph
preceding equation (4), where the Reply article refers to “Comay’sown [sic] definition”;
the definition (ofB(3)) that occurs in Comay’s Comment is simply quoted from Evans’s
publications. It is not Comay’sowndefinition, but rather Evans’sowndefinition.

The Reply article [Evans1996b] says that Comay “asserted the curl of B(3) to be non-
zero”, whereas what Comay actually did was to:

• evaluate the line integral of the complete magnetic field (with the result that the
integral was non-zero because of the contribution ofB(3)),

• convert this non-zero integral into a surface integral via Stokes’s theorem, and (since
its integrand is the curl of B)

• infer that the integrand (i.e. the curl of B) cannot be zero.

This is how hededucedthat the curl ofB (not specifically itsB(3) component) is non-zero.
The Reply article’s description of this deductive mode of reasoning as an “assertion” is
invalid.

3.2 Line and Surface Integrals and Stokes’s Theorem

The Abstract of the Reply article [Evans1996b] reads as follows:

“The argument presented by E. Comay in Ref.1 is in error precisely at the
point where he uses the Cartesian form of Stokes’s theorem. His Comment is
therefore erroneous and inconsequential.”

Thus, notwithstanding that the Reply article contains several other, independent arguments
in defense of theB(3) theory, it singles out Comay’s use of the Cartesian form of Stokes’s
theorem as the point in his argument where he made a mistake.

However, a careful reading of Comay’s Comment reveals that he doesnotuse theCarte-
sian formof Stokes’s theoremanywherein his article; it simply isn’t mentioned anywhere
in his Comment. Hence the first sentence of the Abstract of the Reply article is another in-
stance of false attribution; it attributes to Comay’s Comment something that is not actually
present in it.
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3.2.1 Stokes’s Theorem and its Cartesian Form

The Reply article addresses the question of the correct application of Stokes’s theorem (and
specifically its Cartesian form) in equations (4) and (5) and related text. The Reply article
citesThe Vector Analysis Problem Solver [Milewski1987, p.965 eq.7] for the explicit form
of the Cartesian form of Stokes’s Theorem:∮

C

(F1 dx + F2 dy + F3 dz) = (4)∫ ∫
S

{(
∂F3

∂y
− ∂F2

∂z

)
dy dz +

(
∂F1

∂z
− ∂F3

∂x

)
dx dz +

(
∂F2

∂x
− ∂F1

∂y

)
dx dy

}
whereF is a vector field which in terms of Cartesian components is:

F = iF1 + jF2 + kF3 (5)

that is F1 is thex-component ofF henceforth herein re-written asFx

F2 is they-component ofF henceforth herein re-written asFy

F3 is thez-component ofF henceforth herein re-written asFz

These components are functions ofx y z:2

Fx ≡ Fx(x, y, z), Fy ≡ Fy(x, y, z), Fz ≡ Fz(x, y, z).

Note also that:

1. The L.H.S. is aline integralaround the closed pathC.

2. The R.H.S. is a surface (i.e. 2-dimensional) integral over the surfaceS which is
bounded by the closed pathC.

The more general (not necessarily Cartesian) form of Stokes’ theorem is:∮
C

F.dl =
∫ ∫

S

curl F.n ds (6)

wheredl is an increment of the line around the closed pathC, andds is a (2-dimensional)
increment of the surfaceS; n is the unit vector perpendicular (normal) to the surface. Both
integrals are thusdefiniteintegrals; they are related because theclosedpathC delineates the
edge of the surfaceS. The dot (on both sides of the equation) signifies thescalar product.

This general form is readily related to the Cartesian form via the expression forcurl F
in Cartesian coordinates:

curl F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣
(7)

= i
(

∂Fz

∂y
− ∂Fy

∂z

)
+ j

(
∂Fx

∂z
− ∂Fz

∂x

)
+ k

(
∂Fy

∂x
− ∂Fx

∂y

)
2and also of the timet, but the time-dependence is not relevant to the discussion here.
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where the order of the two terms multiplyingj was reversed on expanding the determinant
in order to make the sign precedingj positive.

Since:

dl = i dx + j dy + k dz (8)

and the Cartesian form ofF is given by equation (5), taking the scalar product on the
L.H.S. of (6) yields the integrand on the L.H.S. of equation (4)

The volume element of the surface integral in (6),ds, being defined in terms of the
normal to the surface,n, is given by:

n ds = i dy dz + j dx dz + k dx dy (9)

and hence taking the scalar product on the R.H.S. of (6) yields the integrand on the R.H.S. of
equation (4).

In this way we see how the Cartesian form of Stokes’s theorem (4) is derived from the
general form (6).

The Cartesian form of Stokes’s theorem (4) applies to anyclosedpathC which will in
general be a curved line in3-dimensional space; in particular the pathC does not neces-
sarily lie in a plane. Similarly, the surface,S is not necessarily planar. The three Cartesian
terms in equation (4) take account of the generally curved nature of the pathC and the
surfaceS.

For a plane surface the integrals will be easier to compute if the coordinate system
is set up so that the plane of the surface is coincident with one of the coordinate planes.
Additionally, if parts (at least) of the pathC are (perpendicular) straight lines then the line
integral will be computed more easily if these portions ofC are coincident with one (or
two) of the coordinate axes.

3.2.2 The Comay and Evans-Jeffers Scenarios

Comay’s scenario is an application of Stokes’s theorem based upon an integration path
consisting of two concentric quarter circles joined by radial segments. The integration
path in the similar Evans-Jeffers scenario is rectangular. In both scenarios the surfaceS is
planar, and wisely both articles place this surface in thex-z coordinate plane.

Thus in the line integraldl is perpendicular toj everywhere, and hence the second term
on the L.H.S. of (4) is zero:j.dl = 0, or equivalentlydy = 0. The reason is that a factor
of the scalar product is the cosine of the angle between the two vectors, andcos(90◦) = 0
when the vectors are perpendicular.3

For the surface integral, the normal unit vectorn is parallel toj, and perpendicular to
both i andk. Hence the only non-zero term on the R.H.S. of (4) is the second (middle)
term; this (as for the line integral) is equivalent tody = 0.

Thus for both the Comay and Evans-Jeffers paths and surfaces, the general Cartesian
form of Stokes’s theorem (4) simplifies to:∮

C

(Fx dx + Fz dz) =
∫ ∫

S

(
∂Fx

∂z
− ∂Fz

∂x

)
dx dz (10)

3The detail in this discussion may appear to be needlessly elementary to some readers. Nevertheless it is given
here for the sake of explicit clarity.
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3.2.3 Evans-Jeffers Equation (4)

In the text preceding equation (4) Evans-Jeffers identify the contribution to the line integral
from “the radial segmentPQ (on thez-axis)” as the “precise point at which Comay’s
argument fails”. This is correct in so far as it is the non-zero contribution fromB(3) along
this radial segment that makes the line integral non-zero.

Equation(4) of the Reply article reads as follows:4

∮
B(3)

z dz =
∫ ∫ (

∂B(3)

∂y
d y d z − ∂B(3)

∂x
d z d x

)
= 0 (EJ−4) (11)

The absence of theB(3)
x dx term on the L.H.S. of this equation is explained in the preamble

to (EJ-4) in the Reply article; this integral is only forpart of the line integral; the part along
the segmentPQ which is along thez-axis. Hence:dx = 0.
However, comparison of (10) and (11) reveals that the presence of the term:

∂B(3)

∂y
d y d z (12)

in (EJ-4), and the absence of the term:

∂B(3)

∂z
d x d z (13)

appear to be algebraic errors.5

The two terms in the surface integral on the R.H.S. of (EJ-4) appear to have been se-
lected because the authors argued (in the text preceding their equation (4)) that the two
partial derivatives in the integrand are zero; in this author’s opinion it is not clear that they
are necessarily zero, for althoughB(3) is directed alongPQ (thez-axis), one would expect
its magnitude to vary withx andy.

A more serious concern is that there is a conceptual difficulty with (EJ-4) in so far as
it apparently attempts to use Stokes’s theorem for anon-closedpath, this being specifically
the straight-line segmentPQ. It is of course valid to compute thecontribution to the
line integral from thenon-closedline-segmentPQ, but one can hardly equate this with
a surface integral, simply because the area of the surface is zero ! Along the line segment
PQ, d x = d y = 0, and hence the “surface” integral is zero regardless of which derivatives
of B

(3)
z are being integrated.

The conceptual oversight on the part of the authors of the Reply article, is that one can
only equate the line integral of Stokes’s theorem to the corresponding surface integral, when
the path of the line integral encloses a non-zero area. To do this for any non-closed path
(and fortissimo for a straight line segment—as Evans-Jeffers do in writing their equation
(4)) is mathematically invalid.

3.2.4 Evans-Jeffers Equation (5)

Equation (5) of the Reply article is introduced as follows:

4Evans-Jeffers use upper-caseX Y Z for the Cartesian coordinates; in quoting their equations here the
corresponding lower-case letters are substituted.

5These surface integral termsB(3) should have az subscript:B(3)
z .
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Consider now Comay’s comment, “ . . . while the ordinary transverse (rotat-
ing) magnetic field makes no contribution because it is perpendicular to the
line segmentPQ.” This is also incorrect because the Stokes theorem for the
transverse components reads∮

Bx dx +
∮

By dy =
∫ ∫

∂Bx

∂z
d z d x−

∫ ∫
∂By

∂z
d y d z = 0 (EJ−5) (14)

Comparison of this equation (14) with the Cartesian form of Stokes’ theorem pertaining to
thex-z plane (i.e. the plane of the Comay and Evans-Jeffers scenarios: eqn.10) reveals the
following algebraic errors:

• The line integral termBy dy should be absent

• The line integral termBz dz should be present

• The surface integral term∂By

∂z d y d z should be absent

• The surface integral term∂Bz

∂x d x d z should be present

Furthermore, since the specific line segment under evaluation is the radial linePQ (along
the z-axis) the other term of the line integral present in (EJ-5) (Bx dx) should be absent;
i.e. both terms of the line integral in (EJ-5) are incorrect, and the correct term is missing.
The same conceptual error noted above for the Evans-Jeffers equation (4) pertains to their
equation (5) also: it is meaningless to apply Stokes’ theorem when the path of integration
C is not closed.

More serious than incorrect and/or missing terms, is the inference that the authors of
the Reply article apparently do not understand:

1. that in aline integralthe integrand is thescalar productof the vector function (field)
being integrated with the direction of the line segmentdl.

2. that Stokes’s theorem only relates the line integral around aclosed pathwith the
surface integral over a surface bounded by that path.

3. that in a surface integral the2-dimensional integration iswithin the surface.

A misconception of the Reply article is to confuse the evaluation of a line integral (and its
subsequentconversion into a surface integral via Stokes’s theorem) with Stokes’s theorem
itself.

The above algebraic analysis demonstrates that the Reply article’s use of the Carte-
sian form of Stokes’s theorem is erroneous, and since the Reply article (in its Abstract)
identifies the Cartesian form of Stokes’s theorem as the kingpin of its rebuttal of Comay’s
Comment, we must conclude that the Reply article has no credibility as an effective rebuttal
of Comay’s proof (by counter-example) that the theory of theB(3) field is both internally
inconsistent and incompatible with the physics of electromagnetic radiation.

3.2.5 Circular and Rectangular Paths

A problem around equations (9) and (10) of the Reply article is that the integration path
being considered,ABCDA is rectangular (rather than the perimeter of the segment of a
circlePQRSP considered by Comay), and yet the text reads:
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“... because of Comay’s assertion that there is no contribution in DA and BC.”

How can the Reply article make such a statement, when in fact Comay never even consid-
ered the pathABCD ? (it was introduced in the Evans-Jeffers Reply).

It appears that Evans-Jeffers adopted the rectangular pathABCDA in order to facilitate
their use of the Cartesian form of Stokes’s theorem - rectangular (i.e.Cartesian) coordinates
being appropriate for such a path. Regardless of their reason, choosing an entirely different
path from Comay is hardly the way to refute his proof, especially since the model field
introduced by them in equation (7) does not represent a radially propagating field.

Another flaw in their argument is that the rectangular pathABCDA is manifestly not in
the radiation zone because the pointA is at the origin of their Cartesian coordinate system;
i.e.at the centre of the rotating dipole.

4. Conclusions
The above detailed discussion establishes several factual, technical and mathematical errors
in the Evans-Jeffers Reply [Evans1996b] to Comay’s Comment [Comay1996a]. These er-
rors have been demonstrated in specific, detailed terms with quotations from both Comay’s
Comment [Comay1996a] and the Evans-Jeffers Reply [Evans1996b]. This detail will en-
able any reader of this article to verify the correctness of the inferences of these errors.
These errors arenot in the trivial category of “typographical”; they are substantive errors
that undermine the integrity, coherence and credibility of the Reply article.

The high level of conceptual and mathematical sophistication displayed in the extensive
literature of theB(3) field (a prodigious scholarly achievement) [Evans1994a, Evans1995a,
Evans1996a, Evans1997, Evans1998, especially] is incongruous with the elementary nature
of the errors (e.g. the incorrect evaluation of line integrals).

The Reply article is a protestation that Comay’s result must be wrong because his con-
clusion is inconsistent with the belief thatB(3) is the third, longitudinal component of the
physical magnetic field in radiation. This belief is a case of mistaken identify, for while
the theory correctly recognizes thatB(3) is directly proportional to one of the four Stokes
parameters of an electromagnetic field [Evans1994a, p.145], it fails to recognize that this
parameter characterizes the polarization state of the field, so that it cannot be an indepen-
dent (third, longitudinal) component of the physical magnetic field; this is expounded upon
elsewhere [Hunter1999].

The Reply to Comay evaluated herein fails to directly address the question of what (if
anything) is wrong with Comay’s analysis.

While M.W. Evans was at the University of North Carolina some of his colleagues
engaged in a series of experiments [Akhtar1997] to detect and measure the longitudinal
magnetic field predicted by theB(3) theory; these experiments produced only negative
results [Akhtar1997].

It is of course possible that electromagnetic radiation has longitudinal field components
in accord with the claims of the protagonists of the theory of theB(3) field, but it is clear
from mathematical analysis [Hunter1999] that any such field is not theB(3) field defined
throughout the literature as the conjugate cross-product of the transverse magnetic field
[Evans1994a, eqn.(4a),p.3]. Comay [Comay1999] has recently pointed out that this def-
inition of B(3) makes it proportional to chargesquared(in the radiation from a rotating
dipole), whereas the physical field must be proportional to charge (not squared), and for
the same reason,B(3) does not satisfy the principle of superposition unlike the physical
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electromagnetic field.B(3) is simply a defined function of the transverse components of
the field, which is properly interpreted as the Stokes parameter of the field that measures its
polarization state [Hunter1999]. The possible existence of a longitudinal field in radiation
must therefore be based upon a mathematical re-definition of this field. This re-definition
must be different from the alternative definition ofB(3) in terms of the vector potential
[Evans1994a, eqn.(12),p.6] (see also [Ogievetskii,Polubarinov,1967]).
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