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Focus and book reviews

Generalized Total Time Derivatives
Forms of generalized total time derivative proposed by Wesley and by Mocanu are compared. It is
shown that in the important special case of a “test charge” q or small rigid-walled detector moving
with instantaneous velocity ( )t�v v  all forms agree on an electromagnetic force law that is the
Lorentz law plus a nominally “unobservable” gradient term, � �q� � �A v , which integrates to zero

around closed circuits (A = vector potential).

Introduction
The total time derivative is of physical importance because—unlike the partial time derivative—it has
the mathematical property of first-order (Galilean) invariance, and thus can be considered to describe
results of physical measurement on which all inertial observers must agree. Since measurements can
occur for many circumstances of motion and types of detection devices, there are numerous possible
mathematical expressions for the total time derivative. Most physicists are acquainted only with the
simplest form,

� �
d
dt t

�

�
� � ��

A A v A , (Traditional) (1)

where � �, , ,x y z t�A A  is an arbitrary vector field that can for mathematical purposes be considered to

describe a moving real or virtual “medium,” t is laboratory or inertial frame time, and ( )t�v v  is the
instantaneous velocity in the laboratory of a detector responsive to some field property or manifestation
of that medium. In physical applications the detector is commonly assumed to be very small compared
to other dimensions of the problem and to move irrotationally. In the limit it may (as in the case of
electromagnetism) be shrunk to a point “test particle.”

Frequently � is assumed to be constant, but this is not a necessary restriction. Physically, detectors or
test particles can move with velocities v(t) limited only by analyticity. It is sometimes thought to be of
interest to treat v more generally as a “velocity field”; that is, to assume that ( , , , )x y z t�v v . This
covers the most general case in which the detector is a “mollusk” of variable size and shape, or subject
to rotation. We shall pass lightly over that rather fanciful case here. It is to be emphasized throughout
this discussion that the symbol “v” always refers to detector velocity with respect to a particular inertial
system, not to relative velocity of different inertial systems.

First, consider v = v(x,y,z,t). For this case Wesley [1] has recently proposed the following generaliza-
tion of (1):

� � � �
d
dt t

�

�
� � �� � ��

A A v A A v . (Wesley) (2)

Like (1), this has the property of Galilean invariance, but its full generality may be in doubt, since
Wesley’s derivation appears to limit detector motion to an “instantaneous circle.” It is appropriate to
mention here also an alternative expression derived by Mocanu [2] and stated by him to be one of sev-
eral attributable to Helmholtz. This expression, likewise associated with v = v(x,y,z,t), he terms “Helm-
holtz’s total circulation derivative in intrinsic or topological form.” It is

� � � �
d
dt t

�

�
� �� � � � ��

A A A v v A . (Mocanu-Helmholtz) (3)

This (as will presently be shown) is also Galilean invariant.
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Alternative Representations
The standard vector identity [3]

� � � � � � � � � �� � � �� � �� � � �� � � ��a b a b b a a b b a (4)

applies if both a and b are vector “fields,” i.e., a = a(x,y,z,t), b = b(x,y,z,t). If, instead, b = b(t), then the
first and third terms on the right drop out, since space derivatives of b vanish. Disregarding this special
case and manipulating formally, we see that (1) can be rewritten as

� � � � � � � �
d
dt t

�
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� �� � � �� � � �� � � ��

A A A v A v A v v A . (Traditional) (5)

In the same way (2) can be rewritten as

� � � � � �
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dt t
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A A A v A v v A , (Wesley) (6)

and (3) as

� � � � � �
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dt t

�
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A A v A A v A v . (M-H) (7)

Thus there is disagreement among the candidate forms for describing the mollusk detector [v = “velocity
field” = v(x,y,z,t)]. This we do not attempt to resolve here, but avoid the need by exploiting a remarkable
simplification that occurs if we confine attention to the physically more interesting special case in which
v = v(t); that is, the case in which v is independent of spatial variables (point particle detector or rigid-
walled irrotational field detector). In that case we see by inspection that all three forms [Eqs. (3), (5) and
(6)] simplify to the “all-purpose” expression

� � � �
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dt t

�
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A A A v v A , [All laws for v = v(t)] (8)

which appears formally identical to (3) but differs in that (3) assumes v = v(x,y,z,t), whereas (8) assumes
v = v(t). Incidentally, Eq. (7) shows that in the latter special case the Mocanu-Helmholtz form simplifies
to the traditional form (1), equivalent to (8). Note that this simplification does not require v = constant,
merely that v be parametrized in a non-field-theoretical way, as a function of time only.

Hertzian Force Law
Arguments will now be given aimed at validating Eq. (8) or at least strengthening its plausibility. We
consider the force law in the case of Hertzian electromagnetism [4-6]. It is one of the attractive features
of Hertzian theory, in addition to the first-order (Galilean) invariance of its field equations, that the field
equations suffice to yield a law of EM force on charged particles without need for postulation of a
separate force law. This is of course not true of Maxwell’s theory, which can be made covariant only by
introducing second-order considerations and which must be supplemented by the Lorentz force law.
(The latter is generally considered not deducible from Maxwell’s field equations.) The Hertzian
(Galilean invariant) force on a charge q (taking c = 1) is simply

Hz Hz
dq q
dt

�
� �

� � �� �� �
� 	

AF E . (9)

Note the substitution of the invariant total time derivative operator for the customary noninvariant partial
time derivative operator. (This is necessary to ensure first-order invariance of the force and field vectors
on the left.) It must be emphasized that the Hertzian field quantities differ from the corresponding Max-
wellian ones. Using the all-purpose form (8) for dA/dt (which is formally the same as Eq. (3), the Mo-
canu-Helmholtz form), we find

� � � � � �Hz Lorq q
t

�
�
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� �

AF v A A v F A v , [All for v = v(t)] (10)

where LorF  is recognized as the traditional Lorentz force in view of � ��B A , which holds for

Hertzian as well as Maxwellian fields. The “magnetic” Lorentz force makes its appearance here auto-
matically in consequence of the invariant formulation, despite our having started from a purely electric
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Hertz field. (Here v = v(t) is the velocity in the laboratory of the detector of Hertzian E and B fields.)
The Hertz force is seen to differ from the Lorentz force only by a gradient term, � �q� � �A v , which

would be difficult to observe in normal experimental conditions, since it vanishes when integrated
around any closed circuit. Its effects might conceivably be inferred, for instance, from any observed
anomalies of plasma diffusion rates or from other plasma anomalies—since “currents” in plasmas need
not flow in closed circuits.

It might further be remarked that, in view of v = v(t), the extra term just mentioned can be written
� �cq� � �A v , where subscript “c” denotes constancy under space differentiation. The identity (4) then

yields � � � � � �c� � � �� � � ��a b b a b a . Application cancels the magnetic term from (10) and leaves

� �Hz q
t

�
�

�

� �
� �� � � ��� �

	 


AF v A  (All laws for v = v(t)) (11)

This [which is obvious directly from (1) and (9)] is the simplest form for computational purposes, but it
hides the connection to established ways. Still, it is interesting that the B-field is apparently not needed
in the force law, and that “magnetic force” can be replaced by the directional derivative of the vector
potential in the direction of test charge motion. But then what is the “detector” detecting? An A-field?
Shades of Aharonov-Bohm!

Galilean Invariance
Next we verify the invariance of (8) under the Galilean transformation; namely,

' , 't t t� � �r r V . (12)

It will be taken as prior knowledge [4-6] that under this transformation

'� � � ,  ( )
't t

� �

� �
� � ��V ,  ' � �v v V . (13)

A capital V is used here to emphasize the distinction between the relative velocity V of two systems
of reference (generally assumed constant, as for inertial systems) and the arbitrary instantaneous detec-
tor velocity v = v(t) with respect to an unprimed inertial system or 'v  with respect to a primed system.
The first of the relations (13) expresses Galilean spatial gradient invariance, the second expresses
Galilean noninvariance of the partial time derivative, and the third expresses Galilean velocity additiv-
ity.

Eq. (8) can be represented by the symbolic shorthand

( (d
dt t

�

�
� � � � � � ��v v  , (14)

it being understood that a vector field operand A is to be supplied and that any open parentheses are to
be closed. With this notation, using (13), we see that
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. (15)

Invariance will be proved if we can show that in the last equality the three extra terms on the right in V
vanish. This follows immediately from supplying an operand A and applying the identity (4). That is,

� � � � � � � � � ��� �� � � � �� � � �� � � ��V A V A V A A V A V . (16)

Both terms on the right vanish because for any Galilean transformation V is a constant. They would also
vanish for more general rigid irrotational coordinate frame transformations specified by V = V(t). Thus
we have shown both Galilean and a more general type of invariance,
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'd d
dt dt
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� �
, [All laws for v = v(t), V = V(t)] (17)

of the total time derivative (8), valid under the stated proviso that v and V are functions of time only.

Summary
We have proven the Galilean invariance (actually, a broader first-order invariance) of the all-purpose

total time derivative (8), valid for v = v(t). Under that proviso, (8) is actually equivalent to the traditional
(1), but is for many purposes a more suggestive form, in that it exhibits explicitly the curl(A) term that
yields the Lorentz “magnetic” force in Hertzian theory. Since the Wesley total time derivative (2) is
readily seen to be that special case of the Mocanu-Helmholtz derivative for which curl(v) vanishes; and
since such vanishing is a physically invariant property; it follows that the Wesley derivative is also
Galilean invariant. Thus invariance offers no clue to guide choice in the more general problem of the
mollusk detector. But the fact that the Mocanu-Helmholtz form is a covering theory of the Wesley form
may suggest superiority of the former. Incidentally, some doubt about the algebraic sign of the last term
of Wesley’s law (2) has been expressed [7]. But it is easily seen that Eq. (8) holds independently of that
sign, provided v = v(t).

The importance of the EM force law in form (10) is: (a) that the Hertzian force law is seen to be a
“covering law” of the Lorentz force law, and (b) that the former differs from the Lorentz law only by a
gradient term that would be unobservable in casual experimentation with closed electrical circuits. Thus
the Hertzian approach, although as yet unproven, is disproved by no observations made on closed cir-
cuits.

In summary, the weight of theoretical considerations seems to confirm the adequacy for electromag-
netic applications of the all-purpose total time derivative form (8), which is formally identical to the
Mocanu-Helmholtz total time derivative [Eq. (3) or (7)]—the only difference being that the Mocanu-
Helmholtz equation claims validity, here unverified, for v = v(x,y,z,t) (the “velocity field” or mollusk
detector interpretation), whereas the all-purpose (8) is limited to v = v(t) (the test-particle detector inter-
pretation). From the physicist’s standpoint this last is not a severe limitation.

Needless to say, empirical validation of the Hertzian alternative to Maxwellian field theory must
await the devising of EM force law experiments sufficiently subtle to detect an extra force term

� � � �q� � � � �� �A v A I , where ( ) ( )q t t�v I  is filamentary current. Less subtle experiments should be

able to establish whether or not there is a further non-Lorentz force term—for example, of the form
� �� ��A I , as required by the Wesley expression, Eq. (2). The present discussion has been limited

solely to first-order physics. There are indications [5,6] that it can be pushed to higher orders by the
simple expedient of formally replacing frame time t everywhere by the proper time d�  of the detector.
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Editorial Comment
It is nice to have the proof of the Galilean covariance of the total time derivative. I think that the
Phipps proof is wrong because he did not take into account that most of the vector operands, like the
electromagnetic vector potential or momentum, under Galilean transformations get inhomogeneous
terms proportional to the boost velocity. Only force is homogeneous under Galilean transformations.
The author implicitly assumes that the Hertzian electromagnetic potentials are the same as the Lor-
entzian ones. Only on that basis his discussion on the relation between Hertzian and Loretzian forces has
some sense. But then his proof proves the adopted assumption! In addition, the physically meaningful
transformations are provided not by the Galilean group but by its one-parameter central extension. For
the extended group of transformations his relations (13) are invalid and again it is not clear what his
proof means.

Edward Kapuscik

Author’s Reply
I appreciate Dr. Kapuscik’s critique and the opportunity to respond to it. First, I prefer in describing my
Eq. (17), � � � �/ ' /d dt d dt� , to speak of this as exhibiting Galilean invariance rather than “Galilean

covariance,” since no linear combinations of components are involved, as is normally the case for co-
variance. I discussed this distinction long ago [1]. I disagree with the assertion that I “did not take into
account that most of the vector operands … under Galilean transformations get inhomogeneous terms
proportional to the boost velocity.” Such extra terms certainly do arise and I have taken account of them.
Dr. Kapuscik refers to the fact that when Maxwell’s field equations or their equivalent in terms of po-
tentials are subjected to a Galilean transformation extra terms of first-order are generated involving the
relative (“boost”) velocity V of inertial frames, and these “invariance breaking” terms predict fringe
shifts, etc., that are not observed and that contradict the relativity principle at first order. He overlooks
the circumstance that Maxwell’s equations and their associated potential equations employ partial time
derivatives exclusively. (This is what gives rise to “spacetime symmetry,” in view of the mathematical
symmetry of partial space and time derivatives.) My discussion concerned total time derivatives. These
differ from partial time derivatives in that they introduce a new velocity-dimensioned parameter v, a
“convection parameter,” that appears nowhere in Maxwell’s theory. Therefore one cannot rely implic-
itly on the “learning” instilled by the latter. In this case when an inertial transformation, Eq. (13), is
applied to the new parameter v, it transforms by Galilean velocity addition into ' � �v v V , thereby
generating a new non-Maxwellian term in V that just happens in every case to cancel the extra invari-
ance-spoiling V-term to which Dr. Kapuscik refers. This has been proven repeatedly [2-4]. In any case
his observation does not show that my “proof is wrong,” because that proof concerns a mathematical
fact that stands independent of field or potential equations.

He says that “The author implicitly assumes that the Hertzian electromagnetic potentials are the same
as the Lorentzian ones.” No, I explicitly stated that Hertzian and Maxwellian quantities are different (as
regards their operational definitions), but since the field equations [2-4] are of the same form in both
cases (but differing by substitution of d/dt for / t� � ), it follows that the equations relating fields to
potential quantities are also of the same form, again differing by substitution of the invariant operator
d/dt for the non-invariant operator / t� � . Hertzian EM potentials are formally related (through identical
formal manipulations) to Maxwellian ones—so the “implicit assumption” of formal similarity that Dr.
Kapuscik questions is a trivially proven fact. Finally, I am surprised by the claim that “the physically
meaningful transformations are provided not by the Galilean group but by its one-parameter central
extension.” I don’t know this terminology, but if “central extension” refers to the inclusion of spatial
rotations I have to object that inertial (Galilean) transformations, without rotation, and the physical
property of inertiality, are still “physically meaningful” at first order regardless of what discoveries may
be made or claimed about physical meaning at higher orders. My Eq. (13) is certainly valid at first order,
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and that is what the proof refers to. It is my prejudice that one has to get first-order physics right before
proceeding to higher-order approximations [4].

Finally, let me take this opportunity to correct a genuine error in my paper. The math is all right, but
the physical interpretation of quantities I denoted v(t) and V(t) was faulty. What I said about those
quantities in fact applies only in the one-dimensional case, where the motions of detector or reference
frame are restricted to arbitrary time-variable rectilinear motions. But the vector notation I used suggests
that my deductions can refer more generally to curvilinear motions … and this is false. Where the rela-
tive motion curves out of a single dimension, one gets v depending implicitly on spatial coordinates, so
curl(v) does not vanish—contrary to my claims—and also in general the dyadic �v  {as in � ���A v }

does not vanish. The upshot is that my Eq. (8) is not the panacea I thought it was, and we still have to
face the problem—not only for the “mollusk detector” but even for the point detector or “test charge”—
of choosing between Wesley and Mocanu-Helmholtz. Or else we must find some other generalization of
the total time derivative when it operates on a general vector field or on a curvilinear path in space. At
the moment I have switched my personal preference to Wesley’s form on the basis of an alternative
derivation he has provided [5].
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Thomas E. Phipps, Jr.

Further Comment
Dr Phipps wrote that he is not familiar with the terminology on the one parameter extension of the
Galilean group. The extensions of groups is well-established theory and the one parameter extension of
the Galilean group in classical physics, besides space-time coordinates, includes the action integral into
the set of basic coordinates or in momentum space it acts in the five-dimensional space with energy,
mass and momentum as coordinates. In quantum physics it is the phase of wave functions which pro-
vides the extra coordinate. Physically this means that instead of considering projective unitary repre-
sentations of the Galilean group we may use ordinary unitary representations of the Galilean group.

Edward Kapuscik

Book Reviews
Statistical Geometry and Applications to Micro-
physics and Cosmology, Sisir Roy, Kluwer 1999.

In Statistical Geometry and Applications to
Microphysics and Cosmology, physicist Sisir Roy
reviews the many research directions involving
probabilistic, fuzzyor fluctuating measures of
distance and time intervals, and shows the im-
portance of their consequences for quantum
mechanics, particle physics and cosmology.

This is a significant and fascinating compen-
dium, and provides in a single place summaries of
dozens of important articles, with some exten-
sions and a nice exposition of their importance,
which would be accessible to the reader otherwise
only by considerable acquisition and time. But
because the publishing house seems to have
completely abdicated its inherent editorial respon-
sibilities, and as English is not the author's first
language, most potential readers can be expected
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to return the book to the shelf and not buy it, or
can expect often to be baffled by the text. As an
estimate, there are about 10 minor language
corrections per page, on average. But those ac-
cepting this inconvenience will probably recog-
nize that in among these new mathematical mod-
els is to be found the likely answer to at least one
of the most basic problems in the foundations of
modern physics, namely the quantum measure-
ment problem (see e.g. A. J. Leggett in Quantum
Implications, ed. Hiley & Peat, Routledge 1987 ),
and possibly the explanation for other anomalies
as well. The various sources of metric uncer-
tainty, from Planck length to measurement error,
can lead to different consequences not fully
distinguished, but this research area is still in
progress; and there can be no simple conclusion
about which sources dominate overall.

The reader may also wish to have certain clari-
fications, especially about a few undefined or
multiply defined variables in some of the equa-
tions, e.g. the missing definition of the probabil-
istic phase factor S in eq. 3.20 for the effective
potential the dimensionless constant ao in the
definition of the Modified Bessel function argu-
ment of eq. 3.28, a missing term in the driver of
the wave equation 3.57, the dimensional error in
the first line of eq. 3.58 for the fine element
squared, confusion of n� with �� in the coordinate
transformation eq 3.89, simple dimensional
errors—i.e. missing factors—in the confinement
potential of eq. 3.128, confusion of x and X and
other problems in section 4.3, confusion of the
stress tensor t�� with an undefined one-form t�, in

eq. 4.72 for the angular momentum tensor, use of
an undefined dimensionless x in the density
equation 6.77 where x in 6.58 and 6.61 is a di-
mensional coordinate, typos in eq. 7.13 for the
Hamiltonian and the unnumbered equation that
follows it, two simple typos in the Compton effect
formula 7.39, double usage of � as an index and
as a region of integration in eq. 7.58 for the ex-
pectation value of the stochastic metric tensor,
etc. Eq. 2.85 for the relative phase uncertainty
between two points needs to be corrected. Else-
where there are missing or misplaced parentheses,
typos in subscripts, etc., most of which are care-
less typesetting or text errors that readers will be
able to correct on inspection.

While full of such careless errors, the overall
synthetic coverage of different models for space-
time here is important, and it is likely that some
such scenario will correct errors subtly introduced
at the root of mechanics, classical and quantum,
in using functions of continuous infinitely-
discriminable space and time points and which
have propagated into paradoxical or unphysical
results. The change of view of the ontology and
framework of physical phenomena to something
more string-like, described in the epilogue in
terms from the ancient Upanishads, may lead to a
qualitatively better model for dynamics.

John Guillory
George Mason University

Institute for Computational Science
and Informatics

� � � � �

Relational Mechanics by André K.T. Assis,
Apeiron, Montreal, 1999. ISBN 0-9683689-2-1.
285 pages, paperback, $25US, available from
C. Roy Keys Inc., 4405 St. Dominique St., Mont-
real, Que. H2W 2B2 Canada.

The author of this remarkable book and of
Weber’s Electrodynamics (Kluwer, Dordrecht,
1994) has dedicated much of his professional life
to reviving and exploiting the mathematical
methods developed by Wilhelm Weber in the
mid-1800’s for treating electromagnetism and
gravity. In a word, Weber adapted Newton’s
instant action-at-a-distance approach to the par-

allel treatment of both these topics. This was
accomplished in a genuinely relativistic way—
that is, by formulating point pair interaction poten-
tials and forces as dependent only on the distance
of separation of the points and on time derivatives
of that separation. To define such a separation
distance unambiguously requires an absolute
simultaneity. For this reason the approach has had
few followers since the advent of Maxwell and
Einstein. But any reader of Assis’s books must
conclude that this eradication of pluralism in the
foundations of physics constitutes a great loss to
the discipline. It has inflicted a sort of tunnel
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vision upon the profession … but fortunately, it is
never too late to reform. I can think of no better
way of broadening one’s physics perspective than
the study of Assis’s works. They bring up-to-date
Weber’s approach, and demonstrate that there
exists an intellectually respectable alternative to
the divergence-plagued methods of field theory,
which have seemingly been explored to exhaus-
tion.

In this respect the present book is particularly
enlightening. In fact I feel obliged to use the over-
worked term “revolutionary.” Here is indeed a
new paradigm, for any who are willing to validate
their claims to open-mindedness through a small
investment of their time. The new paradigm is
strongly Machian. As we know, Einstein began
by claiming an implementation of Mach’s ap-
proach in his general relativity theory … but soon
realized the incompatibility of his own field-
based causal ideas with the acausality of Mach’s
notion of an inertial “influence” of distant matter
on present happenings.

Mach failed to quantify his conception. He
made no attempt to show specifically how the
“gravity” of distant matter might affect local
inertial responses. This was because he did not
challenge Newton’s particular form of the law of
gravity. Weber, however, did offer such a chal-
lenge. His idea, to modify the law of gravitational
potential by a factor dependent on the relative
motion of the interacting point masses—analo-
gous to the velocity dependent potential by which
he had successfully described Faraday induction
and other effects in electromagnetism—was long
ignored by physicists (owing to the advent and
total dominance of field theory), but was rein-
vented by Schroedinger in a little-known paper
[Annalen der Physik 77, 325-336 (1925)] of
crucial importance. In this paper he integrated a
Weber-type velocity-dependent gravitational
interaction over a shell of distant matter and
showed that local inertial effects could thereby be
explicated. That demonstration provided a hint
and gave the needed impetus to Assis’s much
more comprehensive exploitation in the present
book of what emerges as a startlingly “new”
descriptive theme … one that gives quantitative
substance to “Mach’s principle.”

The book presents its subject matter in two
parts, a review of classical Newtonian mechanics
(which is instructive even for the reader well
versed in conventional treatments) and a presen-
tation of the new “relational” mechanics—so
called because the Weber-type separation dis-
tance parameter on which it relies establishes an
invariant “relation” between its two end-points.
That is, observers in arbitrary states of motion
must all agree on the spatial relationship between
the paired particles so described. Hence the goal
of Einstein’s general relativity theory is implicitly
realized through the Weber parametrization of the
physical descriptive problem … without need for
tensors, metrics, manifolds, curved space, etc. To
gain access to this alternative there is only one
price to be paid: Einstein’s epiphany of the “rela-
tivity of simultaneity” has to be de-epiphanized.
To me this seems a small price.

And for that price what do we buy? Assis
shows that so-called “inertial forces” (centrifugal
and Coriolis) can be attributed to the Machian
influence of distant matter, with the consequence
that “the sum of all forces of any nature acting on
any body is always zero in all frames of refer-
ence.” Thus “inertial forces” are not fictitious, but
are in fact gravitational in origin. This is a great
simplification of the foundations of mechanics. In
its sequel, frames of reference have become a
mere descriptive convenience, inasmuch as the
basic force laws are formulated in relational terms
independent of reference frames and invariant
under their changes. This invariance bears no
mathematical resemblance to “covariance,” a
device suited to field theory, not to instant-action
theory. In starting down a new road, one has to
rid one’s mind of old “truths,” even as to the
meaning of invariance. To be sure, the physics on
this new road is spooky … the distant matter
cannot be ignored, as we are used to doing, but
has to be included (in principle) via integration
over an assumed uniform distribution of matter at
great distances beyond our galaxy.

Applications to cosmology are discussed, and
gratifying agreements with observed orders of
magnitude are obtained … but as a physicist I
find these less exciting than the possibility that
future satellite experiments with gyroscopes, for
instance, might probe small discrepancies be-
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tween Newton’s theory, Assis’s theory, and
general relativity. (During the whole of my ma-
ture lifetime I have heard promises of such an
experiment … but it is never more than talk. Is it
possible that the physics Establishment secretly
shrinks from putting the general theory to the real
test of a controlled experiment? Look at the gravy
trains that might run off the track … and unneces-
sarily so, when fiddling of NASA priorities can
easily prevent it. But such science-fear is foolish,
since fiddling of adjustable functions in the gen-
eral theory is as just easy and more Nobelwor-
thy.)

Assis has made his point clearly and (I think)
irrefutably, that Mach’s principle suddenly makes
quantifiable sense the moment we admit a Webe-
rian velocity dependence of gravitational poten-
tial. But that is the lesser part of his story. The big
news is that underlying Newtonian mechanics—

which for three hundred years physicists have
viewed as a completed intellectual creation—is a
whole new discipline of Machian pre-mechanics.
I have little doubt that what will come out of this
challenge to field theoretical presuppositions will
be a closer linkage between classical mechanics
and quantum mechanics. The latter already dis-
plays spooky acausal features. Perhaps the
creakiness at the joints between relativity theory
and quantum theory, customarily seen as a short-
coming of the latter, will turn out to be curable by
replacing relativistic mechanics with relational
mechanics. I ask you, where can $25 buy you a
better chance on a revolution?

Thomas E. Phipps, Jr.
908 South Busey Avenue

Urbana. Illinois 61801
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Relational Mechanics by André K.T. Assis,
Apeiron, Montreal, 1999. ISBN 0-9683689-2-1.
285 pages, paperback, $25US, available from
C. Roy Keys Inc., 4405 St. Dominique St., Mont-
real, Que. H2W 2B2 Canada.

It is well-known that in classical mechanics
there were two distinct concepts of inertial mass:
that of Newton (in which inertial mass is a prop-
erty of a body with respect to absolute space), and
that of Mach (in which inertial mass is the prop-
erty determined by masses of distant stars). It is
also known that when constructing General
Relativity, Einstein started with the Mach princi-
ple, but had to reject it thereafter. However there
still is no general agreement among scientists
about the necessity of a total rejection of the
Mach principle. As an example I recommend to
read very interesting book Relational Mechanics
by Andre Assis.

The author considers the following questions:

1) Can we still believe that Mach principle is
correct?

2) Is there an absolute motion of any body rela-
tive to space or only relative motion between
material bodies?

3) Can we prove experimentally that a body is
accelerated relative to space or only relative to
other bodies?

4) What is the meaning of inertia?
5) When Newton rotated the bucket and saw the

water rising towards the sides of the bucket,
what was responsible for this effect?

6) Was it due to the rotation of the water relative
to some material body?

7) Is it the rotation of the earth relative to some-
thing?

The book shows that answers to these and
other questions with Relational Mechanics are
much simpler and more philosophically sound
and appealing than in Einstein's theory of relativ-
ity. With an understanding of Relational Me-
chanics, a reader enters a new world, viewing the
same phenomena with different eyes and from a
new perspective.

Andrew E.Chubykalo
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