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In this note we establish a connection between two-exponent radius-mass power
laws for cosmic objects and previously proposed two-exponent Regge-like spin-

mass relations. A new, simplest method for establishing the coordinates of
Chandrasekhar and Eddington points is proposed.

Introduction

In previous papers (Muradian 1980, 1997) it has been suggested the two-exponent Regge-like

relation (n =2,3)
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»
between the observed mass m and angular momentum J of celestial bodies. In this relation # and m,
stand, respectively, for the Planck constant and for the proton mass. The exponent n = 3 corresponds
to star-like objects and n = 2 to multistellar ones, like galaxies and clusters of galaxies.

Relation (1), besides to fit reasonably well the observational data (see Figure 1), allows discov-
ering two remarkable points: equating (1) to Kerr limit J*“" = Gm? / ¢ for the angular momentum
of a rotating black hole, we obtain the following solution for m:
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which, for n = 3, can be identified with the Chandrasekhar mass
3/2
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and, for n = 2, with the Eddington mass
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The Chandrasekhar limiting mass for stars (3) and Eddington formula (4) for the mass of the Uni-
verse are of special importance for astrophysics and cosmology (see, e.g., Harrison 1972).
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Figure 1. Spin-mass relation for celestial bodies. Observational data for masses and spins can
be found in (Muradian 1980, 1997). Theoretical straight lines in this log-log plot corre-
spond respectively to:
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1) Regge relation for disk-like objects, J = h[ﬂ]
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2) Regge relation for ball-like objects, J = & {ﬂJ
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3) Kerr relation for rotating black-holes, J =

The corresponding limiting angular momenta could be obtained by substitution of these expres-
sions into (1), as it has been shown (Muradian 1980, 1997):
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Now we will try to establish the same formulae for coordinates of Chandrasekhar and Eddington
points using radius-mass theoretical relations for dense objects, from which the observed celestial
bodies originated according to Ambartsumian's cosmogony, based on concept that all cosmic bod-
ies, including galaxies, stars and their systems, were formed due to the decay, fragmentation and
subsequent evolution of primordial superdense matter with nearly nuclear density (Ambartsumian
1958, 1971).
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First of all, let us note that a theoretical relation between m and r should be valid, in particular,
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Figure 2. Radius-mass relation for celestial bodies. Observational data are taken from (Pad-
manabhan 1993). Theoretical lines correspond to
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3) Black-hole limit, r =

for Chandrasekhar and Eddington points, for which the following relation is valid (Carneiro 1998):
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where 7, -/ m,c stands for the proton radius. Here, for » = 3 and m = m;, we obtain the radius of
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neutron star

while for n = 2 and m = my; the “Compton wavelength” of the Universe follows,
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1 = 8
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Indeed, from (4) and (5) we obtain
J.
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In this last case relation (6) is just a possible expression for well known large number coincidences
(Carneiro 1998, Frankel 1982).

In this way, (6) seems to be a good candidate for theoretical two-exponent (n = 2,3) law relating
the radius and mass of primordial dense proto-objects, from which the present day cosmic bodies
originated, in the sense of Ambartsumian's cosmogony (see Ambartsumian 1958, 1971, Muradian
1980 and references therein). Another observation in favor of this suggestion is connected to the fact
that the same relations for ryg and r;, follows from the expression for half of the gravitational
Schwarzchild radius » = Gm/c’ after substitution of Chandrasekhar m;, or Eddington m;; masses.
This is consistent with the above mentioned fact that the Chandrasekhar and Eddington points corre-
spond in the J-m Chew-Frautschi plane to maximally rotating black holes (see Figure 1).

Relation (6) is plotted in Figure 2 together with the observational data and the black hole limit
line r = Gm/c’. As expected, neutron star and Universe lie on this line. The theoretical line which
follows from (6) with n = 2 fits crudely the data relating to clusters of galaxies, but in the case of
star-like objects the theoretical relation following from (6) with » = 3 is completely uncorrelated
with the data (except the point of neutron star).

The following reasoning can elucidate this disagreement. To (1) and (6) be consistent, one needs
J = mcr, what means that (6) refers to maximally rotating objects. As we have seen, this is the case
for the Chandrasekhar and Eddington points, for which the equation mcr = Gm’/c is equivalent to
r =Gm/c’. But, in general, celestial bodies are far away from this limit and, in consequence, their
radii are systematically distributed above the lines representing (6) (see Figure 2).

But if (6) does not exactly represent the observational data, what does it represent? And why its
partner, relation (1), fits well the data? A possible answer to these questions is that relations (1) and
(6) represent an initial dense stage in the evolution of the bodies, when they have maximum, Regge-
like, angular moments for some given radii. So, as bodies evolve, their radii change, diverging from
the original values given by (6).

In a recent paper it has been suggested the existence of two-exponent scaling relation between
mass and radius of cosmic objects. As indicated in (Pérez-Mercader 1996), the fact that there are
two radically different power laws for two classes of objects could serve as indication that the ob-
jects within each class have a similar physical origin. A possible reason for exponents change is a
different geometrical shape of the primordial objects: disk-like (n» = 2) for multistellar objects and
ball-like (n = 3) for stellar ones (Muradian 1980, 1997, Frankel 1982).
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