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This paper explores an optical interpretation of gravitational redshift, and shows
how the deflection of light and the radar echo delay can be calculated therefrom. As

a result of these considerations, this work establishes new relationships between
general relativity and geometrical optics.

1. Introduction

The general theory of relativity is now accepted as the most satisfactory theory of gravitation.
This acceptance rests partly on its conceptual and structural elegance, and partly on its agreement
with experimental observation. But the theory has been essentially mathematical in character, being
concerned with the consequences of a geometrization of the space-time manifold. Thus the applica-
tion of the theory involves the use of special mathematical methods which, although relevant to
optics in many cases, may easily be considered separately from it. In attempting to deduce their
optical nature, one may pass from the mathematical language to the physical language, and see how
they can be reconciled with each other.

Four classic tests are usually cited as experimental verifications of the general theory of relativ-
ity: the gravitational redshift of spectral lines, the deflection of light by the Sun, the precession of the
perihelion of the orbit of the planet Mercury, and the time delay of radar echoes passing close to the
Sun. Three of these tests examine the influence of the gravitational potential on the propagation of
light. Only the planetary orbit precession involves the motion of a particle of finite mass in the
gravitational field of the Sun. Because these are optical phenomena, one may raise a question as to
whether the three classic tests can also be correctly inferred from the point of view of optics.

It is actually possible to predict these tests in a valid manner on the basis of optics. This paper
explores an optical version of gravitational redshift, and shows how the deflection of light and the
radar echo delay can be calculated therefrom. The interpretation proposed in this paper attributes the
redshift effect to optical phenomenon related to the velocity of propagation of light in a non-uniform
medium. This gives a phenomenological derivation of the gravitational redshift, showing how the
results of more realistic calculations can be obtained from the point of view of optics. The deflection
of light, the radar echo delay, and the plasma effect of solar corona on them are then discussed. It
will be of particular interest to note that the deflection of light and the radar echo delay can also be
correctly derived from the equation of rays of geometrical optics without using the geodesic equa-
tions or the field equations of general relativity. As a consequence of these considerations, this paper
will establish new relationships between general relativity and geometrical optics, apparently unre-
lated areas of physics, with regard to the influence of the gravitational potential on the propagation
of light.
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2. Redshift of Spectral Lines

In 1911, Einstein' predicted the change in the frequency of spectral lines with gravitational po-
tential, generally referred to as the gravitational redshift. The effect was calculated from the time
dilatation in a gravitational potential, which follows from the principle of equivalence. The argu-
ment, as Einstein explains, was as follows:

Let the two points S and S’ be placed at rest, a distance h apart along the lines of force in
a uniform gravitational field of acceleration g. In accordance with the principle of
equivalence, we are able, in place of the system K in this gravitational field, to set the
gravitational-free system K’ which is accelerated with —g. Consider the process of propa-
gation of radiation from S to S’ from a system K,, which is to be free from acceleration. At
the moment when the radiation of frequency [fis emitted from S to S’, let the velocity of K’
relative to K, be zero. The radiation will arrive at S’ when the time h/c has elapsed to a
first approximation. But at this moment the velocity of S’ relative to K, is v = gh/c.
Therefore, by Doppler’s principle, the radiation arriving at S’ does not possess the fre-
quency /f'but a greater frequency [ which is related to fto a first approximation by the
equation

By the equivalence of K and K’, we may replace gh by the gravitational potential if the
same process takes place in the system K.

Astronomical observations, though somewhat ambiguous, have tended to confirm this effect.
Since it does not seem possible to predict this interesting effect without using the general theory of
relativity, the gravitational redshift is now recognized as resulting from the principle of equivalence.
However, contrary to the current recognition, it would always seem possible to find a natural expres-
sion for the gravitational redshift from the optical point of view. If one seeks to introduce an optical
nature of the gravitational redshift, special attention should be given to the velocity v = gh/c, not to
the principle of equivalence. At least phenomenologically, the effect would appear to be due to this
change of velocity which the radiation experiences during propagation along the lines of force of the
gravitational field. Looking for a Newtonian mechanical interpretation, one finds without difficulty
that it is equal to the velocity difference due to the medium or fluid which the radiation experiences
during the propagation between the places at different gravitational potential.

Let p be the density and ¢ be the gravitational potential with g=-V¢@. A uniform pressure
throughout a fluid mass produces no effect on the motion. The time rate of change of the fluid mo-
mentum is equal to and opposite to the pressure gradient force in the medium. If we calculate the

velocity difference due to the medium or fluid with differing gravitational potential according to

dv

i g, or Vg, @)
we obtain the same velocity as that in Eq.(1). This leads to a simple physical interpretation: the
redshift effect is attributed to the relative velocity change due to the medium or fluid by which light
is affected during propagation in the medium. Such an interpretation, in contrast with its relativistic
explanation, can be fitted into the customary point of view of optics, in that it ascribes the effect to
an optical phenomenon related to the velocity of propagation of light in a non-uniform medium.
Consequently, it leads us to consider the redshift effect as being purely optical in origin. In fact, it is

difficult to distinguish a physical difference in form and content between the present interpretation
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and Einstein’s argument here quoted. There is thus no objection in principle to interpreting the red-
shift result from the present point of view. Although Einstein further explained it as due to the time
dilatation between the clocks in different gravitational potentials, what he had found was phenome-
nologically no more than the fact that the velocity of light is altered, linearly to a first approximation,
by the medium as a result of the pressure gradient force.

A difference of interpretation already existed at the first time of observation.” Jewell in 1897 and
particularly Fabry and Boisson in 1909 found displacements of solar spectral lines toward the red
end of the spectrum, and ascribed them to an effect of pressure in the absorbing layer. However,
Einstein’s theory of general relativity® in 1916 established in most physicist’s minds the interpreta-
tion of the redshift effect as the time dilatation in a gravitational potential, and this rather unusual
interpretation has survived until the present. Like most relativistic explanations, the current inter-
pretation is presented in the context of the four-vector space-time approach. The present approach
reopens the question of interpretation and reminds us of the effect of pressure on the redshift of solar
spectral lines. This means that, apart from the gravitational potential, any change in mechanical
pressure, density and temperature of the medium can also give rise to an effect of the same kind on
the redshift of spectral lines. To be reconciled with general relativity, however, vacuum in optics
should be understood as a vacuum without even gravity.

In order to complete the present description, it is necessary to consider the hydrodynamic equa-
tion. The hydrodynamic equation is

%(M:v(m)-vma%ms. 3)
In addition to the gravitational force and pressure terms, we have included viscous and magnetic
forces. As the Sun consists of a conducting medium with a magnetic field, it is necessary to include
the magnetic force term in the hydrodynamic equation, leading to the magnetohydrodynamic equa-
tion. In the limit of very large conductivity, it is convenient to relate the current density J to the
magnetic induction B via Ampere’s law. If we use the vector identity and neglect viscous effects, the
hydrodynamic equation takes the form

i( )—V( ¢—P—B—2j+l(B-V)B “)
dr Py » 87 ) 4rx .
Since the time required for light to propagate a path dr is dr/c to a first approximation, the integra-

tion of (4) gives

1 P B 1
V(r):_(¢_;—%j+4”pc [(B-V)Bdr ®)

for the relative change of velocity in the medium which light experiences during propagation along
the path. The velocity of light at the point of observation thereby becomes
v [ P B 1
c’(r)zc 1+Q =c 1+—2 p———— |+ I(B-V)Bdr ©6)
L c J L c p 8o J
as compared with its velocity c at the moment of emission. By Doppler’s principle, it can be written
in terms of frequency as

ot

drpc?

1
+ —_—
4mpc?

[(: V)Bdr} : )
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According to the present approach, the redshift effect is attributed not to the time dilatation be-
tween clocks in different gravitational potentials but to the velocity of propagation of light as af-
fected by the medium as a result of pressure gradient including gravitational potential. This optical
interpretation is consistent with the fact that such a redshift is absent in the spectrum lines of an atom
influenced by the Coulomb potential of the atom.

An optical approach to the redshift effect may shed additional light on the formulation and par-
ticularly on its relation to property of the medium of propagation. From the point of view of elec-
tromagnetic waves, the light wave in Eq. (6) can be thought of as a wave in a medium with an index
of refraction given by ¢’(r) = ¢/n(r). Thus

2
L=1+i(¢—f—3—j+ ! I(B-V)Bdr. ®)
n(r) c? p 8mp) 4mpc

This consideration illustrates how the present picture of redshift offers a natural connection with the

framework of optics. To reconcile optics and general relativity, as previously remarked, a vacuum
must be understood to exclude fields of any kind. It has a consequence which is of fundamental
importance for describing the deflection of light and the radar echo delay from the point of view of
optics.

Terrestrial measurements are usually made with respect to a coordinate system fixed in the
Earth, which rotates uniformly with a constant angular velocity @ relative to the inertial system. To
an observer in the rotating system, it therefore appears as if the medium is moving under the influ-
ence of an effective acceleration of gravity"

gqﬂ-:g—2(a)xv)—a)><(a)><r). ©)
The apparent gravitational force acting on the medium is the sum of the actual gravitational force,
the Coriolis force and the centrifugal force. After this consideration, we must replace ¢ by an effec-
tive potential ¢4 with g.;in the case of a rotating system.

The redshift effect was qualitatively in agreement with astronomical observations both in the
case of the Sun and in the case of white dwarf star like Sirius B where the effect is about thirty times
larger. However, the quantitative agreement was not very good. While the frequency shift in Eq. (1)
is independent of the point of observation on the solar disk, observations” have shown that the
wavelength of spectral lines increases as the point of observation moves toward the limb. Further-
more, the solar lines observed at the limb are definitely asymmetric, having pronounced red flanks.
There seems to be a systematic change in profile as one approaches the limb. In atomic spectra®, the
broadening of a spectral line due to pressure has shown that the spectral line observed is spread out
more on the long wavelength side than it is on the short. With increasing pressure, the mean collision
time increases and the time between collisions decreases with the result that, as the line is shifted to
the red, it is broadened asymmetrically. From this point of view, the asymmetry observed in limb
lines seems to be of pressure character. In fact, Blamont and Roddier’ found a complete interpreta-
tion of their experimental value at the limb when they added to the gravitational redshift the pressure
redshift of the Lindholm effect. Assuming this to be so, their interpretation, as well as asymmetric
profile, has reminded us of the effect of pressure on the redshift of solar spectral lines, furnishing
support for the present approach.

In contrast to astronomical observations, terrestrial experiments using Mossbauer effect are able
to test the gravitational redshift to an excellent accuracy. In the experiments,® jrays in a nuclear
resonance passed through an evacuated tube or a tube filled with helium along the lines of force of
the gravitational field, and yielded results that were in agreement with the predicted shift in Eq. (1)
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after subtraction of the effect due to the temperature difference between the source and absorber. A
measurement of redshift in a rapidly rotating system’ was shown to fit the dependence of g0n @in

Eq. (9).

3. Light Bending near the Sun

The general theory of relativity states that light rays propagated across a gravitational field un-
dergo deflection. The theoretical value for the deflection of light rays that just graze the Sun’s sur-
face is 1.75”. The deflection angle is classically measured by comparing the apparent positions of
stars that happen to lie near the solar disk during an eclipse, when their light comes close to the Sun
and yet may be detected, with their positions at night six months earlier, when these stars lie on
opposite sides of the Earth from the Sun, so their light does not pass close to the Sun on its way to
us. In eclipse of 1919, about a dozen stars in all were observed, and yielded values 1.98 + 0.12”" and
1.61 £0.31”, in substantial agreement with Einstein’s prediction. It is perhaps this dramatic result
more than any other success that brought general relativity to the attention of the general public.

In radio astronomy, it is possible to measure the deflection of radio signals by the Sun with po-
tentially far greater accuracy than is possible in optical astronomy. Each October, the quasi-stellar
source 3C279 is occulted by the Sun, and radio astronomy groups have taken this opportunity to
measure the change in relative position of two discrete radio sources, 3C273 and 3C279, during the
period before and after occultation. The observed deflections are a separable combination of the
general relativistic effect and of refraction in coronal electron plasma. For example, at radio fre-
quency of 2388 MHz," the maximum possible values of refractivities are 10 and 5 x 107 at 4R
for the general relativistic effect and the coronal electron plasma, respectively, where Ry is the radius
of the Sun. On the other hand, the coronal electron plasma can be virtually ignored at frequencies of
8000-10000 MHz."" Hence, at frequencies of 2000-4000 MHz, it is necessary to analyze the data in
terms of a model, in which part of deflection arises from general relativity, and the rest is produced
by the corona.

The Schwarzschild metric, appropriate for the region exterior to a spherically symmetric distri-
bution of mass M, is given in the standard form as

-1
cAdr? = (l - 2GM)czdt2 —[1 - 2(§M) dr? —r*(d&* +sin® Odg?). (10)
cr

Czl”

In what follows, we use for the components of the metric tensor the expressions
2oo(r) = 1/g,(r) = 1 —2GM/c’r. Assuming that the whole motion takes place in the plane ¢ = 0, we
obtain as the equations of motion three differential equations. For light rays propagating along the
geodesic lines, we replace the parameter T by a parameter s describing trajectory. In particular,
Weinberg'” chooses to normalize s so that
cdt . cdt
Zo—=1 1In gy —— =constant. 1
ds ds
On the normalization condition he has combined the three differential equations into one differential
equation, which is of the same structure as (10). According to Weinberg, the change in 8 as r de-

creases from infinity to its minimum value r,, is given by
172
2 2 1/2
tlee)r T gl dr

A6 :
0 8oo (}")I’b r

(12)

APEIRON Vol. 6 Nr.1-2, January-April 1999 Page 93



This integral can be evaluated by expanding in the small parameters GM/c’r and GM/c’r, to first
order, giving 4GM/c*r, for a light ray deflected by the Sun.

Having reviewed the deflection of light by the Sun, we now turn our attention to optics. The
gaseous layers surrounding the Sun, through which light propagates, are media of spherically sym-
metric varying refractive index. The deflection of light can thus be thought as a result of the refrac-
tion of light in such gaseous layers from the point of view of optics. If this thought is reasonable, a
similar conclusion will also be reached from this point of view. When we check the propagation of
light rays to this end, we realize that the equation of rays of geometrical optics has previously had
the form of Eq. (12).

In a homogeneous medium, the refractive index is a constant and the light rays have the form of
straight lines. Let us consider rays in a medium which has spherical symmetry, i.e. where the refrac-
tive index depends only on the distance r from a fixed point O: = n(r). This case is approximately
realized by the Earth’s atmosphere, when the curvature of the Earth is taken into account. The light
rays are then plane curves, situated in a plane through the origin, and along each ray satisfy"

n(r)rsiny =constant (13)
where i is the angle between the position vector r and the tangent at the point » on the ray. Since
w = 2 at the point r, of closest approach of the ray to the origin, Eq. (13) may also be written as
n(r,)r, = constant. This relation is sometimes called the formula of Bouguer in geometrical optics. If
(,6) are the polar coordinates of a plane curve, then the angle i between the radius vector to a point
r on the curve and the tangent at r is given by

rdéd
(A +r7de”)"*
From (13), (14), and Bouguer’s formula, the equation of rays in a medium with spherical symmetry

has been written in the form
—1/2
AO = f””” | . (15)
r

At first sight, we can see a striking resemblance between this well-known equation and the geo-
desic equation (12). The equation for rays is lacking a term arising from the difference in path
length. For lack of the term, the equation of rays corresponds to the case which is obtained when the
curvature of the physical space in a region of strong gravitational potential is neglected. According
to general relativity, the deflection of light is due partly to the varying velocity of light and partly to
the non-Euclidean character of the spatial geometry. Since these are known to contribute equally to
the deflection," it can therefore be stated that the equation of rays will give a deflection of only half
of the correct value.

This result is to be expected on optical grounds, because the non-Euclidean character of the spa-
tial geometry has been neglected in optics. In order to compensate for the change in light path due to
gravitational potential, one can use the notion of optical path. The optical path represents the dis-
tance light travels in a vacuum in the same time it travels a distance in the medium. If a light ray
travels in a medium with spherical symmetry, the optical path is given by integral over n(r)dr. This
means that the radial interval of integration must be corrected by multiplication with 7(r) to take into
account the difference in path length due to gravitational potential. Upon integration over n(r)dr
instead of the original integration over dr, it would yield a result in which the difference in path
length is taken into consideration. Using the optical path to correct the change in light path, the
equation of rays is modified to
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The modified equation of rays is then in complete agreement in structure with Eq. (12). From the
proposition which has just been proved, one may picture what it is to be a curved space in a region
of strong gravitational potential. As viewed from the present approach, the curvature of the physical
space in the gravitational field of the Sun can best be understood in terms of the medium with
spherical symmetry in which the path of rays is to be curved.

A comparison of (16) with (12) identifies #°(r) with g,,(r). In the equation of rays of geometrical
optics, #°(r) plays exactly the same role g,(r) has played in the geodesic equation of general relativ-
ity. This suggests introducing an optical metric tensor #°(r) consisting of the gravitational potential
plus the mechanical pressure and the magnetic pressure. Taking only the leading gravitational po-
tential into account, both of these equations give the same result for the deflection of light by the
Sun. Thus the optical metric here proposed complements the Schwarzschild metric to this extent. Its
line element will then be reconciled with the eikonal equation. The most important is that the exis-
tence of the deflection of light and its value can also be derived in the explicit form on the basis of
geometrical optics. The emphasis should be on the fact that the deflection of light can be interpreted
as a result of the refraction of light in the gaseous layers surrounding the Sun.

If we further include a frequency-dependent dielectric constant defined by Maxwell’s equation
&(w) = (), we can obtain the explicit and integrated form of the optical metric and exhibit com-
pletely its frequency dependence. Using Eq. (8) and the dielectric constant with &0) = #*(0), we
find far above the highest resonant frequency

n (r,) = e(@)n*(r)
2 2
e R R e L LT A I
mo c p 8mp) 4rpc

where m and e are the mass and charge on the electron, and N is the total number of electrons per
unit volume. Using this optical metric in Eq. (16) will provide a theoretical curve in the explicit and
integrated form for observation that any beam of radiation is deflected during its passage near the
Sun as a result of the general relativistic effect and of refraction in the coronal electron plasma. Since
the characteristics of the propagation obviously depend on the index of refraction n(w), it seems very
natural to expect the frequency dependence of the deflection so discussed. In fact, Muhleman, Ekers,
and Fomalont'® analyzed their experimental data by using geometrical-optics techniques in a spheri-
cally symmetric refracting medium of index n(r,®) = 1 + 2GMIc*r — 2 7e*N(r)/mes, where N(r) is the
electron-density profile in the corona and interplanetary medium. Their interpretation is qualitatively
in agreement with the present approach.

[ ) r? 1-|71/2 n(r)dr

AG = j (16)

4. Radar Echo Delay

In 1964, Shapiro" proposed a fourth test of general relativity. The test involves measuring the
time delays between transmission of radar signals from Earth to either Mercury or Venus and detec-
tion of the echoes. Because, according to the general theory of relativity, the speed of propagation of
light depends on the strength of gravitational potential along its path, the time delays are maximum
when the inner planets are at superior conjunction and the radar signals just graze the solar limb. The
maximum round-trip excess time delays are estimated to be about 200 pisec. Such a change, equiva-
lent to 60 km in distance, could be measured over the required path length with modern radar
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equipment by Shapiro and his collaborators.'® The most reliable of the measured data agree, on the
average, with this excess delay predictions of general relativity to well within the experimental un-

certainty of £20%.
According to Weinberg, the time required for light to go from r,, to r’ is given by
-1/2 12
. d
At—-I | 8w () (g%<r)J dr (8)
oo (7, )’” oo (1) ¢

The integral can be evaluated by expanding in the small parameters GM/c*r and GMIc*r,, to first
order, giving 240 psec for the maximum round-trip excess time delay.

We are now in a position to derive an optical form of expression for the excess time delay. Its
explicit form will follow from an equation which specifies the path of rays. An accurate expression
we seek can then be obtained by converting the equation of rays into an equation for the path of rays.

A procedure starts from Eq. (14). Substitution of (14) into (13) gives

n(r)r*d@
(dr* +r7d6*)"?
Since the path of rays is ds = (dr* + *d&)" in the polar coordinates of plane curve, this may also
be written as

= constant. (19)

2
w = constant. 20)
s
Solving for ds, we have
ds _ I’l(l’)l"zdg (2])
n(r,)r,

In the above equation, Bouguer’s formula n(r,)r, = constant has been used. By making use of the
integral in (15), the variable of integration can be changed from d& to dr, thereby obtaining the

result:
—|71/ 2
As = 1 NG . 22)
n (r)r
Hence, by dividing ds by ¢’(r) = ¢/n(r), the time of propagation of rays is found to be
—1/2
N:ﬁhﬁmnﬂ n(r)dr 23
Y B

where ¢’(r) is the speed of propagation of light in a region of gravitational potential. Although the
details are altered by the new form of expression, the optical characteristics of (23) remain the same
as in (15). Thus, for the correct calculation of excess time delay, we must consider in addition the
difference in the path of rays due to gravitational potential.

As discussed in the equation of rays for the deflection, this requires integrating the resulting
equation along the optical path. However, it draws a clear distinction between geometrical optics
and general relativity, because Eq.(23) has already manifested the form of the integral over the opti-
cal path. To be reconciled with general relativity, in addition to the varying velocity of light with
gravitational potential, the difference in path length must also be taken into consideration. If we
make correction in the radial component of the path of rays, that is, in the component of the path
along the lines of force of the gravitational field, the integral in (23) becomes
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(1)1’ c
The modified integral and that in (18) are again in complete agreement in structure. There is indeed
no difference, to first order in GM/c’r and GM/c’r,, between (18) and (24). This once again identi-
fies #n’(r) with g,(r) in their roles, leading us to consider #°(+) as an optical metric tensor and to
reconcile its eikonal equation with the line element. It is then apparent that the equation of rays of
geometrical optics also predicts the radar echo delay in exactly the same form as given by the geo-
desic equation of general relativity.

5. Plasma Effect of Corona

Having established new relationships between general relativity and geometrical optics, we can
now discuss the classic tests of general relativity from the point of view of optics. In particular, the
present approach affords a straightforward way to calculate the plasma effect of the solar corona on
the deflection of light and the radar echo delay. Simultaneous equivalently accurate measurements at
various frequencies will allow the plasma effect to be deduced, since the plasma effect is frequency
dependent and the general relativistic effect is not. The plasma effect of the solar corona is evaluated
in this section.

As a first important example of the plasma effect of the solar corona, we consider the deflection
of light as a combination of the general relativistic effect and of refraction in the coronal plasma.
The expected angular deflection can be accurately computed using the frequency-dependent refrac-
tive index expressed in (17) in the equation of rays (16):

[ 7 (r,w) 1-|71/2 n(r, w)dr

L0 ]
In order to evaluate this integral, we use in the integrand expansions in the small parameters. It is
both easier and more instructive to evaluate the integral after the expansions. The calculations can be
carried to first order in the small parameters with high accuracy. We now carry out the integration of

no=| 25)

(25).
The argument of the square root in (25) can be expanded to first order in the small parameters as
2 2 2 2
7oy ;r_r] . 2GM(l_l)_ dre (NG - N(r“))W N
2 2.2
;(r_z_] L 22GMr . éiiz'ezr (V- N
" L cn1(r+7;1) ma (7;) —-r ) J
so (25) gives
1
2 Yzl 2 2722 (N(r) = N(z,)) |
po= (L) 9 G, _GMr 208N 27Er(NOZNG) g,
2 r Ar Ar(r+r) ma? ma* (12 —r?)

Consequently, the deflections from the individual effects are combined linearly. Refraction effect in
the solar corona is now represented by

1
50, = I{ o lj'z drl 27N | 226 (NO) - NG) |

28
5 rl me? ma? (r; —r?) 9

This must be an addition to the general relativity deflection.
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In the Allen-Baumbach model,"” the electron-density profile in the corona is assumed to have the
form N(r) = 1.55 x 10%(R¢/r)® electron/em’. Using more recent results on the corona, Erickson'
found that N(r) = 5 x 10°(Ry¢/r)” electron/cm’ represents the data reasonably well from 4R to 20Rs.
Refraction effect is significant where » < 3Rs, at which the (Rs/l")6 term dominates. Hence we use the
electron distribution of the Allen-Baumbach model, resulting in:

£ 50, = 6'24f+1015 j(:_z _ 1}7 %[(%)6 +%[(§)6 —[%jé ﬂ (29)

The integration for 36, is straightforward, and gives
6.24x10° [&Tr@

I |48
where cos @=r,/r.

The total change in @ as r decreases from infinity to its minimum value r, and then increases
again to infinity is just twice its change from oo to r,, that is, 2A6. Hence the deflection of the path of
rays from a straight line is given by 68 =2A6 — 7z, which is calculated positively if concave toward
the Sun and negatively if convex. Putting in the numerical factors, the total deflection is

15 6
5‘951.75,{&j_6.24><210 (105;:)(&). 1)
r, f 48 r

Equation (31) describes interesting behavior of the radiation bending near the Sun. The first term
represents the general relativistic effect by which the path of rays is bent toward the Sun. The second
term represents the coronal refraction by which the path of rays is bent away from the Sun to the
contrary. This is not surprising when we see the difference in sign between these terms. Actually,
experimental values at radio frequencies of the general relativity deflection were determined by
fitting, by the method of least squares, the measured data to curve of a model bearing difference of
sign between these effects. At optical frequencies, coronal refraction is extremely small, so it can be
neglected. However, at radio frequencies, it plays an important part in the deflection, as shown in
Figure 1, which shows the deflection angle as a function of frequency for the distances in solar radii
of the ray’s point of closest approach to the Sun’s center.

The question might be raised as to whether varying velocity of light in the coronal plasma also
gives rise to a change in path length therein. If we assume that varying velocity of light in the coro-
nal plasma does not give rise to a change in path length of rays therein, the radial interval of integra-
tion must still be corrected by multiplication with 7(#) even in the coronal plasma, not with n(r,@) as
used in (25). We must then drop the fourth term in the integrand of the integral in (27), that is, the
first term in (28). Coronal refraction thus obtained will be exactly the same as what one finds by
evaluating the original equation of rays (15) on purely optical grounds. Note that there is a complete
agreement in the form of expression for the plasma effect between Eq. (15) and Eq. (25) with such
an assumption. In fact, the evaluation of coronal refraction from the equation of rays (15) was car-
ried out to first order by Bracewell, Eshelman, and Hollweg.19 Their calculation gives 82(RS/1”(,)6 sec
for the angular deviation of a ray of frequency 9.6 GHz in the corona assuming the Allen-Baumbach
model. When Erickson’s coronal model is instead assumed, the angular deviation is given by
0.14(RS/1”(,)2 sec. Seielstad, Sramek, and Weiler'! used in data analysis these values as parameters
describing refraction effects in the solar corona, when they measure the deflection of 9.602 GHz
radiation from 3C279 in the solar gravitational field using an interferometer at the Owens Valley

56, +ﬂcosﬁsin9 +£cos3 @sind +lcos5 495im9—| , (30)
43 24 6 |

T
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Figure 1. Deflection
angle as a function of
frequency for
r/Rs=15,2,3, 4.
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Radio Observatory. The results of their calculation are indeed in exact agreement with what we
would obtain from each model if we excluded the first term from the integrand of the integral in (28)
on that assumption. However, on the assumption that varying velocity of light in the coronal plasma
also gives rise to the change thereby in path length of rays, Eq. (31) gives coronal refraction of
96(Ry/r,)° sec for 9.6 GHz frequency. If we used Erickson’s coronal model, we would obtain coro-
nal refraction of 0.21(Ry/r,)* sec. To say it in terms of the metric tensor here proposed, the difference
of calculation can be viewed in a way that is very helpful in providing physical insight into the term
arising from the difference in path length. In Eq. (31), we have used the metric tensor of the compo-
nents

oo and g, =s(@)r(r). (32)

1
~e(@)r(r)
As viewed from the present approach, their calculation corresponds to the case which is obtained
when the components of the metric tensor are

800 but g, =n*(r) or 1. (33)

1
@) ()
The reason for this difference is readily understood by referring to the equations of rays (16) and
(15) from which angular deviations were respectively calculated.

As a second example of the plasma effect, let us calculate the plasma effect of the solar corona
on the radar echo delay. The time required for light to go from 7, to »’ is given by Eq. (24). To
evaluate the dependence of the radar echo delay on the frequency being propagated, we must con-
sider Eq. (24) with the frequency-dependent refractive index in (17):

—1/2
7, o)k | n(r,0)dr

i (r, 0)r* c

1) = | {1 - (34)

In order to evaluate this integral, we once again use in the integrand the expansions in the small
parameters to first order. Proceeding in exactly the same way as for (25), Eq. (34) gives
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The time required for radar signals to travel to Mercury and be reflected back to Earth is

2[H(ryr,) + Ur,orag)], Where ry; and ry, are astronomical radii of the orbits of the Earth and the Mer-

cury around the Sun. The round-trip excess time delay is then given by &t = 2[(ry,r,) + {(reris) —

T(ryry) — T(roorag)], where T(ry,r,) and 1(r,,ry,) are the times required for radar signals to travel the

paths in straight lines at speed c. The distance 7, of closest approach of the radar wave to the center

of the Sun is much smaller than the distances r;; and 7, of the Earth and Mercury from the Sun.
Assuming the electron distribution of the Allen-Baumbach model, the integral yields

15 6
5r = 4GMr1+ln(4rEer—|_6.24x10 (217rr0 )(&j _ 36)
e L r2 J f? 4c r,

0
If, instead, we use Erickson’s coronal model, we then have

2
St = 4(;3”[1 +ln( Arictis H _2.01x10° (6’”0 )(ﬁj . 37)
=

r r? c A\,

As in the case of the deflection, because of the sign difference, the plasma effect of the solar corona
on the time delay is opposite to what is usually expected from the general relativistic effect. For
either equation, the positive terms on the right describe a general relativistic delay in the time it takes
a radar signal to travel to Mercury and back. In contrast, the negative terms describe a coronal
plasma contraction, that is, a radar time contraction. Figure 2 shows frequency dependence of round-
trip excess time delay for the distances of closest approach of the radar wave to the center of the
Sun.

We now compare Shapiro’s calculation with the results obtained from the preceding equations.
At the beginning of measurement, Shapiro estimated 87= 1.4 x 10*—3.7 x 10 * sec for observations
of Mercury near superior conjunction with 7, ~ 4Ry at 430 MHz frequency of the Arecibo Iono-
spheric Observatory. This difference in time delays between the general relativistic effect and the
coronal plasma effect was nowhere large enough and positive for a really reliable result to be ob-
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tained solely from Arecibo data. He was thus tried to reduce the plasma effect by a factor of almost
400 by using measurements made at 8350 MHz frequency of Haystack radar of Lincoln Laboratory.
For observation of Mercury with r,=4Rg at 430 MHz radiation, Eq. (36) gives &= 1.8 x 10—

12.6 x 10™* sec, and Eq. (37), in which the same model as used by Shapiro has been assumed, gives
8t=1.8x10*~11.9x 10* sec. The values obtained for the plasma effect are about three times
larger than Shapiro’s estimate. This is because we make a correction in the radial interval of the path
and integrate the resulting equation along the optical path bending near the Sun, unlike Shapiro’s
calculation along the optical path in straight line without correction. If we assume that the difference
in path length is due solely to differing gravitational potential, the radial interval of integration must
still be corrected by multiplication with 7() even in the coronal plasma, not with n(r,®) as used in
(34). The excess time delays are then given by 1.8 x 10*—8.4 x 10* sec and 1.8 x 10*—7.9 x 10*
sec, respectively. The values so obtained for the plasma effect are just what we should expect if the
excess time delays were calculated from the equation of rays without any correction on purely opti-
cal grounds.

6. Conclusion

The discussion in this paper shows that the redshift effect is attributed not to the gravitational
potential alone but to the pressure gradient including the gravitational potential in the medium
through which light propagates. Asymmetry observed in limb lines furnishes physical support for the
effect of pressure on the redshift of solar spectral lines. It has shown that the equation of rays of
geometrical optics can also predict the correct values for the deflection of light and the radar echo
delay by the Sun. Furthermore, agreement in structure between the equations of rays of geometrical
optics and the geodesic equations of general relativity suggests introducing an optical metric of #*(r)
consisting of the gravitational potential, the mechanical pressure, the magnetic pressure, and viscous
effects in the medium of propagation. These results are obtained without direct calculations only by
comparing the equations of rays with the geodesic equations formulated by Weinberg. In the light of
this fact, Weinberg’s formalism has opened a door to establish new relationships between general
relativity and geometrical optics. Indeed, it was the formal similarity between (12) and (15) that
enabled the present approach to be proposed.
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Appendix: Review of Planetary Motion
According to the general theory of relativity, the
elliptical orbit of a planet rotates in its own plane in
the same direction as the planet moves. For the
motion of Mercury in which the effect can be de-
tected most easily, the theory predicts an advance of
the perihelion of angle 43.03” per century. This
value is in excellent agreement with 42.56 = 0.94”
that is left after subtraction of all other known effects
from the total observed motion® Einstein’s an-
nouncement of the general theory of relativity in its
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definitive form was immediately hailed by some
astronomers as explaining a previously unaccount-
able discrepancy between the observed and theoreti-
cal motions of this planet, although some astrono-
mers were, however, intuitively opposed to relativity.
It must be by far the most important experimental
verification of general relativity, both by means of
the formal clarity brought to the theory by a space-
time geometrization and by virtue of its high accu-
racy.
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In this appendix, we wish to review the equation
of the orbit in terms of the energy and angular mo-
mentum. The planet’s path is not an ellipse but an
exceedingly complicated space-curve due to the
disturbing effects of all of the other planets. The
equation of the orbit may therefore be meaningless,
but we can still talk in terms of the system energy
and the system angular momentum. For many appli-
cations, the equation of motion containing the energy
and angular momentum is the natural one. In order to
discuss the comparison with Newton’s theory or the
transition to quantum theory, it is important that the
description of the motion be in terms of its energy
and angular momentum.

Let us see what can be learned from Einstein’s
theory, using only the equations of motion in the
Schwarzschild metric field, before deriving the orbit
equation. We begin by pointing out that the path
length of a particle in a static isotropic gravitational
field is ds® = g,,dx“dx". The squares of velocity are
then given by

drY  (deY
3> CVviog, | — I+ P —]. Al
Qoo g dr dar (AD)
In consequence of these relations the Schwarzschild

metric in (10) can be written
2 1/2
dr =gééfdr[1——z] : (A2)
c

to a first approximation. This form of equation
reduces to the familiar equation leading to the Lor-
entz time dilation in the limit as gy, approaches to
unity. In this sense one may say the relation in (A2)
as the Schwarzschild time dilation.

The equations of motion in the Schwarzschild
field yield two constants of motion. One of them is
given by

dt
Zoo— = constant, (A3)
dr

which corresponds to the energy of the system. The
other constant is obtained from r*(d@/d7) = constant,
and is absorbed immediately into the definition of
the angular momentum. It would seem at first sight
that the constant in (A3) is of no importance, for
clearly any constant of integration can be added to
the right of (A3) without affecting the validity of the
equation. However, it is evident that the constant has
an important physical significance, for it can bring
the formulation of the resulting relativistic mechanics
in terms of the energy of a particle as in the case of
Hamiltonian in Newtonian mechanics. The relativis-
tic equations of motion must be such that in the
nonrelativistic limit they go over into the customary
forms given by Newton’s theory. Thus the task of
identifying the constant is greatly facilitated by
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seeking the form which it would have in the nonre-
lativistic limit. In the nonrelativistic limit, Eq. (A3)
can be expanded as

gooi = %(mcz + lmv2 - %j , (A4
dr  mc 2 r
where m is the mass of a particle. By comparison
with Newton’s theory, we can identify the constant
with
dt 1
gOOd_T:W( mc2+E) . (AS)
Consequently it yields the expression

dr
E= mczgood—r —mc? (A6)

for the energy of a particle of mass m and velocity v
in the static isotropic gravitational field. From
Eq.(Al), the momentum is defined by

dr d do |/ A
dTan pg—mrdr—r . (AD)
Equations (A6) and (A7) are the necessary relativis-
tic generalizations for the energy and momentum of
a particle, consistent with the conservation laws and
the postulates of general relativity.

As in the special theory of relativity, it is natural
to attempt to identify the four equations of energy
and momentum conservation as relations among the
energy-momentum four-vectors. We observe that the
momentum in (A7) is proportional to the spatial
components of the four-velocity defined as
Vg,dx%dz in (Al). The time component of this
four-velocity is \/g()ocdt/dz: Comparison with (A6)
shows that the energy of a particle differs from its
time component by the rest energy mc’. We are thus
led to

— 1/2
Pr = Mgy

dr
E= mczgoog (A8)

as the covariant form of the total energy, for then the
momentum p and FE/cVgy form an energy-
momentum four-vector. Formally the connection
between the energy E and the momentum is ex-
pressed in the Schwarzschild metric in (10) or in the
statement that the magnitude of the momentum four-
vector is constant:
E? (2 2\ _ 2.2
s——(pr+py)=mc. (A9)
¢ 8oo
Equation (A9) is an extension of the relation 7%/c* —
p*=m*c” in special relativity that meets the require-
ments of general relativity.

Note that the gravitational potential lends itself to
incorporation in the metric of space-time geometri-
zation, so the potential energy is absorbed automati-
cally into the path length of a particle and its motion
therein. In general relativity, therefore, such energies
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as kinetic energy and potential energy become
meaningless any more; only one energy of a particle
is needed to solve the equations of motion in their
most general forms.

Having formulated the relativistic expression for
energy, we can now review the relativity effect in the
equation of the orbit of planet in terms of the energy
and angular momentum of the system. For compari-
son with Newton’s theory, it is preferable to define
the energy E as in (A6), which would bring F in line
with the nonrelativistic value. The Schwarzschild
metric in (10) can now be expressed in terms of two
constants of motion £ and / as

(m+EP [dr jz P,
— g, =

czgoo E rz mc. (A]O)

This equation can also be obtained from a combina-
tion of the differential equations resulting from the
geodesic equations. But most often we are more
interested in the shape of orbits, that is, in » as a
function of € than in their time history. The angular
momentum relation can then be used directly to
convert (Al10) into the differential equation for the
orbit; this gives
(m+E)Y g, ( dr jz ~
g0 r*{de r 2
The solution may thus be determined by a quadra-
ture:

1
Af = J{(mcz+ EY  m*? L}Z g\dr

1
2

(Al1)

czlzgoo lZ }"2 }"2 . (Alz)

At perihelia and aphelia, » reaches its minimum
and maximum values r, and r_ , and at both points
dr/d@vanishes, so (Al1) gives

(mP+EyY 1 m*c?
Algoolre) 1 r-
where goo(r) =1— 2GM/c?r.. From these two equa-
tions we can derive values for the two constants of

the motion:

( E JZ r2—r?
It—] == 2_-1 >
mc 77800 (r ) —r=goo(r.)

m’c? _ szgoo(ﬂ)— V:Zgoo(’l)

& Zoo(r-) = goo(r.)
The expressions for the energy and angular momen-
tum appear here in somewhat different forms in-
volving the metric tensors go(r), but their equiva-
lence in the limit as gy — 1 with the respective
nonrelativistic Newtonian relations are shown by
expanding the equations to a first approximation as

2
EE_GMm’ 2 25;Mn:
P+ e

(A13)

(Al4)

(A15)
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Using the exact values of the constants given by
(Al14) in (A12) yield the formula for A@as

1/2
AO = J’%;)drx (A16)

1
(g () - gi) - i) - gan)) 1 |2
€oo(r) — oo () r?
We can make the argument of the first square root in
the integrand a quadratic function of 1/# which
vanishes at » = ry, so

1
2
A= JHLLILLH (1B
r FAr e crjr

where C = 1 — (2GM/c?)(1/r, + 1/r-). The constant C
could be determined by letting » — oo.

We can obtain the same result more simply if we
use the expansion in GM/c?r in the formal solution of
the equation of motion given by (A12). The process
of arriving at the orbit equation is particularly simple
here. The angle swept out by the position vector is
then given by Eq. (A12) as

1
2mE(, E ) 2GMm*(  2E|?
|1+ % R I+—

[ k 2mc I°r

mc

A

N

(A18)

As it stands, this indefinite integral is of the standard
form. The integrand differs from the corresponding
nonrelativistic expression in that the second term in
each parenthesis represents the relativistic correction.
In a certain sense, Eq. (A18) is the general-relativity
analogue of Sommerfeld’s treatment of the hydrogen
atom in special relativity.

On carrying out the integration, the equation of
the orbit is found to be

3G2M2 2
-0, )(1 - ij
—= A l+eco — ¢ L (A19)
r r
o)
where
GMm? 2FE  AG*M*m?
A= |t ——+——=7—}
/ mc c’l
1 (A20)

2, TE  4GPMPm? P
=1+ 2172, 3 1- 2 272 4
G"M*m \ 2mc c’l
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and 6 is a constant of integration. In addition to the
motion of the perihelion of a planet, the relativity
effect produces the term (GM/c?)(dr/d0) in the
angle swept out by the radius vector of the planet.
This term is not a new result but merely a result of
rewriting the square root in the integrand which the
integration of (A17) or (A18) actually yields, using
(A12) to a first approximation. It is evident therefore
that the relativity effect in planetary motion obeying
(A17) or (A18), is to cause not only the precession of
the perihelion of the orbit of a planet but also the
change in the angular displacement of the planet due
to its radial velocity. The additional change appear-
ing in the angular displacement of the planet, which
does not appear in a circular orbit, seems to represent
an effect due to the finite velocity of propagation of
the solar gravitational field.

In order to calculate A@to first order in GM/c?r,
we need gy, to second order in GM/c’r. To say it in
another way, the current discussion of the planetary
orbit precession serves as a touchstone for the possi-
ble forms of metric tensor by requiring the degree of
agreement to second order. Equations (A17) and
(A18) are obtained by setting goo(r) = 1 —2GM/c*r.
But the optical approach discussed in sections 3 and
4 gives a metric tensor that can be expressed as
2oo(r) = (1 — GM/c*)%, when only the gravitational
potential is taken into consideration. Unless the
optical approach is incorrect, we can gain further
insight into the metric tensor by assuming that the
usual rules for the motion of particles and light rays
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Note added in proof. The reviewer’s criticism of
the redshift result is so instructive that the author
would like to introduce his criticism to the reader-
ship.

|C1] The redshift equation, Eq. 1 should hold for
any acceleration. If derivable from a potential one
could postulate that gh/c be replaced by the right
member of Eq. 5 and then define n(r) by Eq. 8. This
would avoid the potential confusion of fluid drag
effects, as in Fizeau’s experiments, and also divorce
the proposed effect from fluid flow per se. As the
effects all stem from relative accelerations of refer-
ence frames, a clear description of what constitutes
proper frames within and outside a “fluid” is needed.

[C2] I do not think that it is always possible to at-
tribute the redshift to a relative velocity between an
inertial frame and a frame moving with a fluid. It may
be possible that a relative acceleration between
frames causes a local redshift and a cumulative time
delay. I think that an appeal to the principle of
equivalence is still necessary in order to include all
causes of acceleration as causes of redshift.

|C3] Without doing all of the manipulations re-
quired for proof; I suspect that one could retrieve the
redshift implied by Eq. 5 from the field equations of
general relativity. The terms beyond gravitational
potential should be contained within the stress-energy
tensor of the right member of the field equations.
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This is no criticism of Eq. 5; in fact it is good to have
an intuitive way of arriving at the redshift result.

[C4] The author describes Einstein’s interpreta-
tion of redshift as a manifestation of time dilation in a
gravitational potential as “rather unusual.” I believe
that this is unwarranted. At this point in the develop-
ment of the author’s optical analogy he has tied
everything to changes caused by properties of the
“medium” of propagation. Since there are effects
clearly due to a gravitational field in the absence of
any other “medium”, and other interpretations are
lacking at this point, I believe that it is incorrect to
call Einstein’s interpretation “rather unusual.”

Author’s reply to [C4]: It reveals a difference of
standpoint looking at the relativity theory between the
current paradigm (reviewer) and the opponent
(author). What the experiment has actually demon-
strated is a change in wavelength or frequency with
gravitational potential, not a change in rate of clock
with it. One can see from the original paper that
Einstein presented the interpretation of the redshift
effect as a result of fitting the predicted speed of light
¢’=c(1 + ghlc®) even deliberately into the postulate
of the constancy of the speed of light. I think that
Einstein put the cart before the horse in its interpreta-
tion, apart from the controversy of whether the pos-
tulate is consistent or inconsistent.
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