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Time's Arrow, Detail Balance, Onsager Reci-
procity and Mechanical Reversibility:

I. Basic Considerations

Christopher G. Jesudason
Chemistry Department, University of Malaya
50603 Kuala Lumpur, Malaysia
This first part analyses the mechanical and statistical basis of time reversibility con-
cepts which have played a pivotal role in constructing fundamental theories in irre-
versible thermodynamics and quantum physics. It is concluded that these concepts
cannot be derived from classical mechanics and statistics, but seem to be more like
axioms, which claim to have foundations in classical mechanics and statistics. The
sequel will attempt to suggest how alternative formulations might be developed.
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Preface
Whilst preparing  for the 92nd AAAS conference   in San Diego, U.S.A. (2011) , the author
noticed that this particular work had not been typeset properly according to the galley proof
corrections, where the equation references  in the text were often incorrect.  I am grateful that
Roy Keys   has agreed to  re-publishing the corrected version  after  a time lapse of  about 12
years. The modern theories of Physics have incorporated ideas of mechanical  reversibility and
CPT invariance in quantum  mechanics and particle theory. The current work shows that these
time honoured formulations  are mathematically questionable despite their large scale  and
coordinated utilization.
The manuscript remains largely unchanged and any modification to the original text is denoted
by words within square [ ..] parenthesis.

Introduction

The concepts of time reversibility, detail balance, system evolution and entropy are closely con-
nected, where time reversibility assumptions stem from considerations in mechanics, whilst all the
latter phenomena are often described as a marriage of mechanics with statistical theories.

In order to determine the limits of validity of the core assumptions used in describing the above,
one must examine master equations and kinetic processes, because the master equations used to
model kinetic processes often involve factors called the transition probabilities (Thomsen 1953)
which are constructed to sometimes exhibit properties of time reversal symmetry. The principle of
microscopic reversibility, which features strongly in Onsager thermodynamics (Onsager 1931a,b)
and other aspects of physical theory (Whittle 1986) states that (to first order) the transition probabili-
ties linking any two different states are identical for that ordered pair of states (Thomsen 1953, Sec
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II). Since these transition probabilities are sometimes assumed invariant in regimes away from ther-
mostatic equilibrium they provide a link in relating the thermostatic probability density of states and
their kinetic coefficients to those  away from equilibrium which are also solutions of the Fokker-
Planck equation. This standard technique is widely utilised (Agarwal 1973; Case 1972, eqn.74)
especially in “fluctuation-dissipation” theories that derive kinetic coefficients from equilibrium
densities.

The analysis of the validity of these concepts is dependent in turn on mechanics and probability
theory which we shall consider first in the following section. We observe that most workers in irre-
versible thermodynamics are not concerned (Zak 1996) with the limits of validity of the assump-
tions, which are taken as axiomatic, but on elaboration about these axioms. This does not necessarily
imply that the current work would jeopardize their detail formulations; at most it might modify
interpretation. Similarly, others, (Karakostas 1996) concentrating on other more philosophical as-
pects, have provided a metacritique of some aspects of the arrow of time without focussing on these
assumptions such as the reversibility in time of the Hamiltonian or wavefunction. Our primary ob-
jective, on the other hand, is to analyse the axiomatics, with the intention of encouraging efforts
aimed at descriptions of nature that is more mechanical and deterministic, with minimal assumptions
concerning the microscopic laws obeyed by the system, so as to moderate the tendency in current
developments which emphasizes both non-locality and non-determinism (due perhaps to the influ-
ence of quantum mechanics), notably in the fractal treatment of thermodynamics and chaos, where
Universality of critical exponents for instance are postulated without strict mechanical (causal) de-
duction (Gouyet 1996).

1. Classical Mechanical Considerations

There are two basic mechanical principles, (Tolman 1950, p.102) namely the principles of dy-
namical reversibility and reflectability which underpin current descriptions of irreversibility, and in
thermodynamics, the development of the entropy formalism contained in the Boltzmann H-Theorem
(Keizer 1976a, paragraph about eqn.14)) and various fluctuation-dissipation theorems attributed to
Callen and co-workers (Delgado Domingos et al. (eds) 1974, p.173)) and their quantum analogues.
Thus, the limits of validity of these principles is important for deciding on a basis to describe ther-
modynamic irreversibility, and this point will be considered after examining the principles.

1.1. Reversibility Principles
The principle of dynamical reversibility states (Tolman 1950, p.102) (by suitable choice of ini-

tial conditions) that for conservative Lagrangians or Hamiltonians symmetric in their momenta there
exist two solutions to the equations of motion, (–t,q,-p) and (t,q,p) where t,q,and p are the time,
position and momentum co-ordinates respectively, whilst the principle of dynamical reflectability
states (in Euclidean space, Cartesian co-ordinates) that for positive time, there exists independent
solutions (x,y,z) and (x,y,–z) for a system co-ordinate. These principles obtain for strictly mechanical
systems. The importance of these statements for many particle thermodynamics is that for steady
state conditions where there is a net particle flux, there exists an average potential due to the struc-
ture of the system V(xi) for particle flux species xi, and thus the above principles are applicable to the
average motion of particles, which yields the detail-balance condition (Onsager 1931a,b; Yourgrau
et al. 1982, p. 35-39) which some consider more fundamental then the Second law (Thomsen 1953),
a force-field –V(xi) and symmetry conditions in the case of dynamic reflectability. The considera-
tions below are for a Euclidean space (Cartesian co-ordinates) system of particles with unit mass.
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1.2. Results in dynamical reversibility
Subjected to the above conditions (and standard notation [with unit masses for the particles

where ( , ) ( ) ( )H T V p q p q where V is the potential energy and Tthe kinetic energy]), Hamil-

ton’s equations of motion q


= H/p, p


= –H/q, are invariant for the transformed variable set
T{t' = -t, q' = q, p' = –p, H' = H(p',q')} where the primes are for the transformed variables, and both

these motions at (p,q) and (p',q') must also represent the same acting force field since ' 'p


= –
H'/q' = -H/q = F = F'. Newton’s law on the other hand yields F = dp/dt, whereas by reversing
p, dp'/dt = –F for the positive time increment dt. This apparent paradox is resolved by noting that
the set T above is a reparameterisation of the same unique equation of motion, where if t' = –t,
F' = dp'/dt' = F, so that in any point in positive time, there is only one non-superimposible solution,
implying a vector direction in the transformation which will be depicted below. In practise, however,
the principle is evoked in positive time with the superposition of two different solutions for fixed t so
as to yield the desired results (Chandrasekhar 1943, p.55 Sec 4; Feynman et al. 1963, Sec 46-3 to
46-9; Landsberg 1982, pp. 3,4,47,73,104,149, etc.; Prigogine 1980, pp. 2,6,203; van Kampen 1987,
p.121) and from the above does not generally obtain from the algebra and therefore is an assump-
tion. An example of the standard assumption is given in Figure 1. The points in the T transformation
may be represented by a line diagram below representing a particle trajectory in real (positive) time
in direction OX, whereas negative time is along OX' by time reversal. The trajectory AB is mapped
by T to the line path A'B'(i.e. not B'A').

Thus, the computation of trajectories cannot imply independent solutions to the Hamiltonian
which give rise to differences in physical properties such as the motion as alleged in the develop-
ment of this principle. Referring to the diagram, if by path 1 the system is at point (q,p)1 initially in 
space (point A) , then at time t ( = ) later it is at some point (q',p')1 (point B) which is uniquely
related to (q,p)1 by Hamilton’s equations along the vector AB. If initially it has co-ordinates by path
2 (q',–p')2 (point B',and where the same symbol for the co-ordinates represents the same numerical
value) then at time t later ( = it may be represented at point (a,–b)2, where if the vector line trajec-
tory of the diagram is maintained, then it does not follow that a = q, and –b = –p as assumed in the
standard development, (van Kampen 1987, p.121) since this would violate the equivalence of New-
tonian and Hamiltonian mechanics as proved above since the AB line trajectory is equivalent to the
A'B' line trajectory under time reversal invariance and not B'A'.

Another fundamental example of the time reversal T transformation is in the original and subse-
quent quantum development (Reif 1965, p.521) of the Boltzmann collision integral where the scat-
tering cross-section s referred to molecules 1 and 2 with initial velocities v1 and v2 (prime denotes
final velocities after scattering) written s’(v1,v2v'1,v'2) corresponding to AB in the diagram is

Figure 1. Diagram of T transformation

negative time positive time
X' B' A' O A B X

____________________|_______|________|_________|___________|_________
(co-ordinates) (q',-p,-t-) (q,-p,-t) (o) (q,p,t) (q',p',t+)
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equated to s’(–v'1,–v'2 –v1,–v2) representing line B'A', violating the specified vector direction of
the transformation.

1.3. Principal of dynamical reflectability
It follows from the above that for the stated form of the Hamiltonian, two distinct solutions do

not exist in positive time. It is also possible to make this conclusion from the proof of this principle,
as given by the treatises (Tolman 1959). For Lagrangian systems with the above stipulated condi-
tions (including the potential V being an eigenfunction of the co-ordinates), the proof of the principal
is to compare the Euler-Langrange (EL) equations for a particle trajectory for all three co-ordinates
(set 1) with another (set 2) with the same form except that the i = 3 co-ordinate replaced by another
reflected set:
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Then if {xi = gi(t), i = 1,2,3} is a solution for set 1 then it is maintained that {xi = gi(t), i = 1,2, x3 = –
g3(t)} (Tolman 1950, pp. 100-101) must also be a solution. However, for Langrangians symmetrical
in the velocity variables, the i = 3 (set 2) equation is equivalent by multiplication by –1 to the i = 3
(set 1) equation so that a distinct solution is not anticipated. The importance of this principle is that it
envisages a plane of reflection, so that for a specified motion, (Tolman 1950, p.102) “any motion of
a system and any mirror image or enantiomorph of that motion would be equally possible.” Thus,
violations in handedness would be said to exist when experiments do not show equal proportion of
measured intensities of properties arising from enantiomorphic motion. Furthermore, such a devel-
opment justifies Onsager setting the equality to the following correlation function (Delgado Domin-
gos et. al. (eds) 1974, p.76)

x1(0)x2(t) = x1(0)x2(–t) (1)
when usually, however, other statisitical developments demand transforms which negate the mo-
mentum and time to preserve time reversibility.

If the forces are specified for the particle motion at each infinitesimal segment of the true path,
then for the kth particle, the co-ordinate rk is

ttt
t t

kk   


dd)(Fr (2)

so that two arbitrary constants (e.g. the position and velocity) is sufficient to uniquely define the
path. Since Fk does not change sign upon reversing the motion [momentum] in negative time, there
can be only one unique path in positive time (to two arbitrary constants) which contradicts the stan-
dard assumptions (Yourgrau et al. 1982, p.81). The quantum analogues of detailed balance follow a
similar form of reasoning as is found in classical derivations and may be similarly examined.

The extension to quantum mechanics is currently dependent on the validity of ‘microscopic re-
versibility' in the sense that Newton’s laws or Hamiltonian dynamics do not imply irreversibility, and
this type of conviction appears to be the basis on which E.P. Wigner, Schwinger and others devel-
oped a theory of time reversal in quantum mechanics (Sakurai 1964 Chap. 4; Wigner 1959 Chap.
26) and applied them to physical systems, such as in particle physics and those attributed to degen-
erate levels (Kramer’s degeneracy) in atomic spectra (Wigner 1959, Chap. 26; Kpupicka et al.
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1968, pp. 166,193-196). If it were true that Newton’s laws of motion were “reversible” in this com-
monly assumed sense (Sakurai 1964) then the Onsager ‘principle' that both directions of a thermo-
dynamic path are traversed with equal frequency (microscopic reversibility hypothesis) in any
physical system would seem a most reasonable assumption in equilibrium at least, because of the
“neutrality” in the direction of motion given a fixed force field configuration. Since this is not gener-
ally the case, then the current thermodynamical developments in at least the Callen, Onsager and
Prigogine sense (Glansdorff et al. 1954;Pathria 1977) may be opened to question.

Wigner time reversal in quantum mechanics is achieved by supposing that the diagonal elements
of Hermitian operators have classical analogues, that is, that the expectation values of certain quan-
tum mechanical operators such as for momentum and position corresponds to the classical behavior
of systems within the appropriate limits. For instance, under the time reversal operator, T̂ , the fol-
lowing are assumed to result for the expectation values of a quantum mechanical system, i.e.

ttandLLppxx
TTTT


ˆˆˆˆ

,,, (3)
where x, p, L and t represent the position, momentum, angular momentum and time co-ordinates
respectively (Sakurai 1964 p.82). These quantities would yield new properties as a result of ‘time
reversal' if descriptions such as van Kampen’s are assumed (Williams 1971, p.103-108); from the
preceding arguments, on the other hand, if new properties do result from such operations, they must
be due to intrinsic system symmetries of the Hamiltonian that allow for these operations to deter-
mine the new properties, and not to the general algebraic properties assumed for the Hamiltonian in
time reversible assumptions. For instance under time reversal, the wave equation for the free particle
is represented by a particle physically traversing (in positive real time) in the opposite direction to
the particle when not under time reversal (Sakurai 1964 p.83, eqn.4.22). The technique used to
derive further equations from time reversal is to relate the properties of the classical Poisson brack-
ets to the quantum mechanical commutation relationships (Sakurai 1964, pp. 82,86). The Poisson
brackets in classical mechanics actually provides the conceptual link to the quantum mechanical
commutation relationships (Leech 1958, pp. 90-94). Recently, it has been proposed that the quan-
tum-mechanical commutation relations reflect global and not local properties, and thus one may
question the application of local transformations to global properties (Jesudason 1998a).

The influence of these “principles of time reversal invariance” has been deep and far reaching in
particle theory where it constitutes the fundamental means of analysing nuclear processes (and in
thermodynamics, at least in the Callen, Kubo, Onsager and Prigogine sense). In particle physics, the
ideas of “symmetry violations” are based on such ideas as space and time invariances and reversals
(Lee 1988 pp. 16-20). We would like to propose that such a type of assumed procedure with regard
to classical time reversal (and possibly other) invariances have led to an interpretation of nature
where symmetry and symmetry violations have become the basis for postulating theorems in particle
physics, technically known as CPT symmetry principles (Lee 1988 p.16) and in irreversible thermo-
dynamics. Perhaps the “element of surprise” which accompanied the results of the decay of Co60

was in part conditioned by the inherent belief in the symmetry properties of the Hamiltonian, includ-
ing its “time reversed” properties (Lee 1988 p.4) as outlined in the Tolman postulates. The incorpo-
ration of “time reversal” adds yet another mathematical property to the resulting equations, where
the transformation of the Hermitian operators under say parity has a form not dissimilar to those for
time reversal (Sakurai 1964, p.81 eqns 4.7-4.10). This would introduce all kinds of properties which
may be correlated and contrasted to experimental results, leading to the apparent violations etc. In
quantum theory, time reversal ideas have been applied to the commutation relations between co-
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ordinates and momentum (Brenig 1989, p. 39) to keep them invariant with respect to time reversal,
and one has to choose the time reversal operator as an antilinear operator  a = a*, where a is an
arbitrary complex number, where  is defined as follows:

    operatorsmomentum-like
coordinate-likefor
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Recently (Jesudason 1998a), it has been proved that for instances of the same domain
space for the co-ordinates and momenta, the commutation relations such as   )ˆ(ˆ,ˆ kkk qfiqp 
can only be true in a global sense, and so the antilinearity of  would have to be interpretated
in a similar vein to circumvent contradictions. [More precisely, it was shown that

 ˆ ˆ, 0k kp q  for the same domain space, so that   ,  (  )p q i f qk k k  is true only in the

global  sense and may not pertain to local coordinates in the same domain space.]

2. Gibbs ensemble and statistical considerations

2.1. Results from probability theory and the Gibbs’ Ensemble
We use the standard notation of set theory in our equations (Rozanov 1977, Chaps 2-3) We note

that events separated in time by the time parameter t in any one frame of reference may be viewed as
constituting separate classes of these same events at different times, where these events form non-
empty set classes denoted by A1, A2...An; B1,B2...Bn and so on in the time domain of mutually exclu-
sive events. This argument is strictly classical in its viewpoint where any event is recognised without
having temporal extension, that is, it occurs at a definite time within any one frame of reference.
Special relativity apparently does not address this issue and neither does any extensions thereof.
Thus, we write for the probability of event A occurring at time t denoted by P[A(t)] the following
expression
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Here, the events B1, B2...Br precede event A and they form a complete set of events from which
event A may arise after time t.

Suppose we prepare N identical systems at time t' = 0 and examine them at time t. Let the num-
ber of systems with quantum numbers r and q (where r and q may represent a vector of quantum
numbers) at time t be denoted by r,q. Then, relative to the initial state, we define the probability (if it
exists) of the state (r,q) at time t as

)/()( ,
,

, NLimtP qr
N

qr 
 
 . (6)

If only one system were prepared and we determine after time t the state of that system (having
the same initial state as the above ensemble) and repeat the procedure N' times, then we may define
the probability of the system to be in the state (r,q) at time t as

)/()( ,
,

, NLimtP qr
N

qr 
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


(7)

where 'r,q is the number of times the system is in state (r,q) after time t within the set of N' meas-
urements. A common postulate of statistical mechanics asserts (the Ergodic theorem) that for distin-
guishable systems
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P'r,q(t) = Pr,q(t). (8)
We shall suppose for simplicity (suitable generalisations are possible but shall not be considered

here; by and large it is anticipated that the final results will not differ significantly from this simpli-
fied treatment) that the systems are ( ) distinguishable and (  ) conserved (i.e. the system cannot
split into two or more systems) when ensemble averages are taken. We may then represent each
system as one unique line trajectory in time, puncturing a particular quantum mechanical set of states
at any time t where the set of states may be represented as a convenient system of co-ordinates in
geometrical space. Interference and correlation phenomena (as in the electron diffraction double slit
experiments) may in some instances not allow measurements to be made on a particular system of
the ensemble which will not also affect the trajectory of other systems. If these effects were not
present, then it would be possible to continuously monitor the state of the system over time, i.e., the
values of their state variables if there is no interference between the measuring device and the par-
ticular member of the ensemble. If correlation effects between systems are significant, then we may
describe the average trajectory of a system by determining the value of the state variables at any time
tm and then bring back the system and the ensemble to the initial state and measure the state vari-
ables again at the same time interval tm. The average value of the state variables for any time tm may
be determined by repeating the above procedure until an average limit is reached as the number of
times the procedure is repeated increases. This method of determining the average trajectory may be
employed if there is cross interference effects between the measuring device and the ensemble
member even if there does not exist significant correlation effects between systems in the ensemble.
The term r,s represents the number of trajectory lines that puncture the region that belongs to the
state (r,s). In what follows, we assume that the appropriate limits have been taken (the ’s and N’s
all tend to infinity).

The change in the probability  Pr,s of the system being in the state (r,s) between time t and
t + t is then given by
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From Eqns. (5), (6), (7) and (9) we write the transition probabilities  as
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and where 


,
, represents the number of system trajectories which puncture the state set (at

time t and end up finally in the quantum state ( in the further (unit) time t. The subscripted
variables represent the initial trajectory class and superscripts the final trajectory destination for any
time interval. For what follows, the  transition probabilities and ’s are all functions of time unless
otherwise indicated.

From (9), the total number of trajectory lines puncturing the state (r,s) at time t + t, r,s(t + t)
must be given by:
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,, ttt sr

sr 
 

 (12)

where



Page 16 APEIRON Vol. 6 Nr.1-2, January-April 1999
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From [(9)]], (10) and (13) we derive
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From (10) and (12), the conservation of the number of systems and the definition for the ’s, we
have
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Thus, from (14) and (15)
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which is similar to the standard thermodynamical expression (Cox 1950, eqns.(1-2)) for the master
equation
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2.2 Transitions in coupled systems
Having defined the terms involved in the standard representation (Cox 1950), we now consider

the case of coupled transitions, such as that of a system in state i coupled to a heat bath (reservoir or
some other system) with quantum state p; let there be a transition of the system to state j, and the
heat bath to state r. The transition probability is given (in unit time) by ip,jr.

The total transition per unit time from state i to state j of the system (for all values of p and r) is
given by i,j. Now,according to the standard representation of the master equations (Cox 1950,
p.242) the following relations hold:
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, ,ir js js ir 

where the primed quantities refer to the reservoir states.
If the system and the reservoir together constitute an isolated system, then all transitions for this

combined system must be energy conserving. Then for any actual transition ir'jp', the conservation
of energy implies the existence of some function F whereby F(i,r') = F(j,p') for all transitions that
conserve the total energy of the system.

The equations written previously for the generalized Gibbs ensemble is directly applicable to
this system, provided that the functions are so defined that there is no violation of the principle of
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conservation of energy. The state of the combined system is given by (i,r) where it is supposed that
if the interaction Hamiltonian between the system and the reservoir is very small in absolute energy,
then the state of the system is given by the quantum state i of the system and the quantum state r of
the reservoir (usually a product state ij). The probability of the system being in state j, denoted Pj is
defined as
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if there is a violation of the law of conservation of energy.
From (10) the transition probability from system state j to i in (unit) time t may be written
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where
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Then from (18b) and (20) W 'ij = ij Pi(t) so that the total change in the probability of state j in
unit time Pj(t) is given by
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which is also the master equation given by standard treatments in eqns (18).
However,
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where
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From (10) and (20), the transition probabilities are given by
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However, the standard thermodynamical result is
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The reservoir state is given by
NP

j
sjs )(' ,  . (27)

From (26) we see that
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We note that this is not the same as (25). Furthermore, because of the symmetry (eqn 24),
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in contradiction to what was mentioned earlier [in eqs. (20) and (25)]. Thus, for modelling kinetic
processes, the forms given in (25) must be used if time reversibility assumptions are not utilized
since (25) would contradict the standard forms which assume symmetry (Cox 1950, p.242). Often,
applications have assumed the validity of time reversed detailed balanced without further question
(Ben-Shawl et al. 1979; Hood et al. 1984, Sec.V(D); Klein 1955, eqn.3; Lloyd et al. 1954, sec.5;
Reif 1965, p.553). The description as elaborated in standard treatments is attractive because it re-
lates the transition probabilities to the equilibrium probability density distribution, where the cardi-
nal and oftened utilized formula (Reif 1965, eqn.5.2.10) for non-equilibrium distributions is given
by
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where the transition probabilities are no more symmetrical, and where in actuality these transitions
are between a much larger thermal reservoir at a known temperature coupled to a system in equilib-
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rium with it, but which is extrapolated to nonequilibrium regimes using detail balance arguments.
Monte Carlo techniques have been applied with the supposition that detailed balance is a neccessary
condition for its algorithms, but it can be shown that this need not be the case (Jesudason 1997).

In fact, part of the above developments may be traced to the influence of the assumption that for
weakly coupled systems, the probabilities of the system and thermal reservoir are independent. Such
an assumption, however is not always compatible with the principle of conservation of energy and
may be demonstrated as follows (Reif 1965, p.551).

Let the probability of the heat bath (which is coupled weakly to the smaller system) existing in
state r' be denoted by Pr'(t), and this probability is proportional to the factor exp (Er'/kT), where Er' is
the energy of the r' state, T the temperature and k the Boltzmann constant.

Then
0  Pr'(t)  1

and
1)(

'
'  tP

r
r (31)

For the system at any state i, we must have
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and
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where the conservation of energy may be stated
Er' + Ei = Etotal = constant (34)

for all states i,r') of the composite system where Etotal is the energy of the composite system. If
either the system or the reservoir is observed separately, then Pi and Pr' would represent the prob-
abilities of the occurrence of the respective states i and r'. The terms in the expansion of the product
in (33) would be of the form PiPr'. Since probabilities are always positive, each term in the expan-
sion is positive.

Multiplying out (33) and supposing that P(i,r') = Pi(t) Pr'(t) implies that a violation of the con-
servation of energy will ensue for state (i,r') when

totalir EEE  (35)
If we neglect those states which imply an energy violation, then summing over the probabilities

of all allowed states with the assumed validity of the expression for P(i,r') would lead to a total
probability of occurrence less than one, which is a contradiction. To typically assume the probability
of the system as a product of two independent probabilities with partial energy conservation (Hag-
strum 1966, eqn.5; Hood et al. 1985, eqn 12; Reif 1965, eqn.15.2.4) in such systems whilst main-
taining the Markovian master equation form with the added postulate of detailed balance would
similarly lead to the above difficulties regarding probability of occurrence, even if the transition
probabilities are symmetric with respect to permutations of the subscripted indices. It appears, there-
fore, that great care must be exercised in writing down kinetic equations where the probabilities are
considered independent but which are nevertheless subjected to energy constraint and/or Markovian
master equation forms.



Page 20 APEIRON Vol. 6 Nr.1-2, January-April 1999

In what follows, the system may be composed of weakly coupled subsystems which do not con-
serve total energy, i.e. the coupled subsystem described by the state (p,q) is further coupled to an
energy source or sink, where all the coupled sub-systems are in the same reference state before
measurements are commenced.

The theory of Markov chains (Rozanov 1977, p.84) give the master equation in standard form as
)()()( ttPttWtP i

i
i   (36)

where i and  are general states of the system and the W’s represent the transition probabilities.
For a coupled system, the transition probabilities Wo are given by (per unit time)
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From Eqns (37-38)
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by permuting the super and subscripted variables.

2.3. Discussion of Various Representations
The formal definition of detailed balance is not clear, where a variety of different meanings are

associated with this concept, some of which are discussed below to illustrate how contradictory
statements may be avoided in deriving a form of the transition probability.

(a) On detailed balance from the master equation
Let

 
 


 



i niin

i nininin

PPW
WPWPP

(40)

represent a postulated master equation, where the P’s and W’s are the probabilities of state occupa-
tion and transition probabilities respectively. It is commonly believed that Win equals Wni because of
a result in first-order time dependent perturbation theory. (Yourgrau et al. 1982, p.81)) From (40), a
steady state, such as an equilibrium state would imply that all the P’s are zero, equal or that
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ni n in ii i
W P W P  (41)

or
 i Iinn PWP (42)

since (37-38) yields
  i nii in WW = 1

if
Wni = Win (43)

where Pn is not a rate of change of a quantity; that is, there are linear dependent relations amongst
the probabilities apart from the one due to normalisation.

On the other hand if detailed balance (Thomsen 1953, Section II(D)) means that for each par-
ticular state transition i j there exists also the transition j i such that the rates are the same at a
steady state (such as thermostatic equilibrium) for each of these transitions, then for the kth state

transition, the contribution to the qth state probability rate
k

qP


must vanish i.e.

qkqkqk

k

q WPWPP 


= 0, (44)

so that
PkWkq = PqWqk. (45)

If, however, Wkq = Wqk then Pk = Pq. Thus for such problems, the probabilities are all equal if the
transition probabilities do not change. If there exists a situation in equilibrium where Pk Pq but
where the transition probabilities are still symmetric for the equilibrium state, then a contradiction
would follow, i.e., detailed balance in the above sense does not hold generally. It is at this point that
equations which effectively do not require symmetry of the coupling coefficients are constructed in
the standard representation (Cox 1950) i.e. Win Win where the energies between the states are
different. Perhaps these constructs are based on the conviction that the only master equation which
adequately models a system at equilibrium is represented by the Pauli type [i.e. eqn. (17)] and since
it is known that the probabilities are not all equal at equilibrium, then the coupling coefficients can-
not be symmetrical if detailed balance is demanded as a necessary condition for equilibrium. Clearly
it is one thing to demand postulated conditions and another to realise that there may be other repre-
sentations for equilibrium not subsumed by current hypotheses. The felt need to reconcile the sym-
metry of the coupling coefficients derived from traditional quantum mechanical methods (e.g.
Fermi’s Golden Rules) and the inherent non symmetry of the coupling coefficients at equilibrium
(given the demand for eqn. (17) as the only form) has possibly lead to conflicting developments of
detailed balance concepts, some of which are discussed below.

2.3.2 A view of events in time
Let there be a characteristic time to discern events i.e., a situation whereby events are ‘quan-

tized' in time extension. Then there is a unit of time in which the entire class of events are contained,
where the events are characterized by a particular transition rr'ss’. Let there be N different transi-
tions. Then   or  = 1/N. These types of processes may be conveniently modelled after Poisson-
type statistics [in any one frame of reference].

2.3.3. Elementary Quantum Mechanical Consideration
The equilibrium distribution function for a system may be derived by using the fundamental sta-

tistical postulate that the probability of any particular state is proportional to the number of states
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accessible to a much larger system in thermal equilibrium with the smaller system. (Reif 1965,
pp. 201-203).

However, in quantum mechanics, the probability of a system being in a state n, whose wave
function is

tEhiqUtCtq kk
k

k
0)/2(exp)()(),(  

is Wn, where
)()(* tCtCW nnn  (46)

and q and t are the system space and time co-ordinates respectively, all other notations being stan-
dard.

If the system is in state k at time t = 0, then the transition from state k to a group of states near
n of density n is governed to first order by the equation (Tolman 1950, pp. 400-401)

  nnkn V
h

tP  2
24

 (47)

where Vnk represents the matrix element of the perturbing Hamiltonian and P n(t) is the probability
rate for the nth state.

It must be realized that the density of states is not immediately proportional to the probability of
occurrence of any particular state n in a non-equilibrium situation since from (47), the probability of
occurrence of the state  is zero at time t = 0, in spite of its having a high density of states.

It follows that degeneracy factors are also important in constructing simple master equations for
elementary kinetic processes.

Prigogine (Delgado Domingos et al. (eds) 1974, p. 175) has later commented [in addition
to his earlier association with purely classical detail balance (Glansdorf et al. 1954)] that for
weakly coupled systems, Onsager’s proof actually reduces to Fermi’s Golden Rules for transi-
tion probabilities and as such allows for more general applications. We may therefore infer
that such applications will run into similar difficulties as mentioned in previous sections con-
cerning classical considerations because it will be demonstrated that the higher order coupling
coefficients in a system result from the expansion of a perfect differential by Taylor expan-
sion, and it is difficult to establish a similar correspondence in quantum mechanical transition
probabilities, although this must exist. Furthermore, in the steady state such as equilibrium, the
rate of transition and probability of occupation is proportional to the degeneracy or phase
space volume of the state (fundamental assumption of equilibrium statistical thermodynamics)
so that in this case n cannot represent a probability measure for state n (since it is empty),
implying that for these processes, another type of rationalization may be required to connect
quantum mechanics to non-equilibrium thermodynamics. . [ If it can be established that the
degeneracy or phase space volume element is always equivalent  to the density n then the
standard expressions (such as (47) ) would seem to be more firmly grounded.]

Conclusions

This part argues that the fundamental premises of time reversibility in physical theory does not
directly follow from the analytical results in mechanics and statistics. There seems therefore a press-
ing need to found these and other physical theories on a firmer foundation than what is currently
available. The sequel will attempt to suggest a few areas that may be explored. However, it is antici-
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pated that such a project would require new developments in social and political relations to tap the
experiences of persons in a value attributive manner (due to anamnesis of work) over a broader
‘community space’ of persons, if there is to be any hope of long-term coherence.

Postcript
[ The sequel to this work appeared in Apeiron 6(3-4) : 172-185(1999)  and equation (32)

should  have read . . / 0.n T    ]
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