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Many years ago, the difference of potential between the inner and outer surfaces of a
hollow, circular, dielectric cylinder rotating in a constant magnetic field parallel to
its axis, was measured by the Wilsons. There is still some controversy whether their
measurement is in agreement or not with relativity. In this work, for a cylinder ro-
tating with a small angular velocity, we make a complete and fully covariant analysis
(the v?¢ ? terms are not neglected) of this experiment. We confirm the previous theo-
retical results obtained in a less rigorous and non-covariant way.

1 Introduction

The electrodynamics of moving objects has been in the past the subject of many experimental
and theoretical works. The magnetic effect of a moving charge was first observed by Rowland [1]
and that due to a moving dielectric by Rontgen [2]. These effects were confirmed and placed on a
quantitative basis by Eichenwald [3] whose careful experiments were analysed by Jones[4]. Then,
on a suggestion from Einstein and Laub [5], the Wilsons [6] performed an experiment which is the
counterpart to Eichenwald’s. A dielectric cylinder was made to rotate between the plates of a con-
denser in a magnetic field parallel to the plates. A difference of potential was observed between the
plates.

A simple way to explain this result [7] is to replace rotation by a rectilinear motion, parallel to
the plates but at right angles to the magnetic field. Then, at low velocity, that is neglecting the
v’e ? terms a simple relativistic calculation gives [8] for the difference of potential AV between the
plates

AV = y[] —LJVIHO (1)
HE

In this expression Hj is the constant magnetic field, / the distance between the plates, &, the char-
acteristics of the dielectric material, v the constant velocity parallel to the plates.

So, if a,b, are the outer and inner radius of the dielectric cylinder, Q its uniform angular velocity
of rotation, one has approximately: / =a—b,v =Qr = Q(a + b) / 2 and Eq.(I) becomes

AV:yMQHan_bZ, M=1-L )
2 U

In the Wilsons’ experiment £=6 =3, so M=0.944 and they found M= 0.96 while the Lorentz
theory of electrons gave M =1—1/e=0.83. Taking into account the poor accuracy of the Wilsons’
measurements, it is generally considered that their result confirms relativity [7,8].

But relation (2) may also be obtained in a less simplistic way by using electrodynamics in rotat-
ing media. In this case, one uses a corotating frame K’, the most suitable being the Frenet-Serret
tetrad [9,10] which plays the role of an instantaneous inertial frame. Then, in K’ an holonomic de-
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scription of the electromagnetic field is obtained by assuming that it rotates with K~ and Maxwell’s
equations are:

(_g)%a,-[(—g)% F.I'k} = J*, a,[(—g)%Gf’f} =0 (€))

The Latin indices take the value 0,1,2,3, and the summation convention is used, Fk, G/k, are the
electromagnetic tensors, J* the current density and g the determinant of the space-time metric tensor
in K. For the nonholonomic description, Maxwell’s equations are

5;"‘ =J*k, ré’f =0 (4)
with for any tensor 7* (T'/¥ are the Christoffel symbols)
T = 0nT/ 413, + T, 7] 5)

Unfortunately all the works on rotating media use a Galilean description of rotations with azimuthal
velocity v=CQr and it has been proved recently [11] that with this description, Eq. (1) and Eq.(2)
differ in the Galilean corotating frame and no one has the inertial form; that is, the covariance of
Maxwell’s equations is broken down. This result challenges the relation (2) and it has been argued
recently [12,13] that there is an apparent conflict between theory and the Wilsons’ experiment.

This suggests that one should work in rotating media with a largely ignored relativistic descrip-
tion of rotations put forward by Trocheris [14] and Takeno [15] many years ago, specially since it
was also proved [11] that with this description both equations (3), (4), coincide with the inertial form
of Maxwell’s equations, so that the full covariance of electromagnetism is restored. We make here a
rigourous analysis of the Wilsons’ experiment in terms of the relativistic Trocheris-Takeno descrip-
tion of rotations.

2. Basic equations

We consider a semi-infinite circular dielectric cylinder rotating with a uniform angular velocity

Q around its axis parallel to a static magnetic field Hyi. in which i; is a unit vector in the z direction.

Since this problem is axisymmetric, Maxwell’s equations with the cylindrical coordinates r, ¢ z
reduce to

0,F -0,E, =0, 0,H.-0.H,=0 (6a)

r*0,(rD,)+0.D. =0, r70,(rB.)+0.B. =0 (6b)

corresponding respectively to the curl and divergence equations; E,B,D,H, are the usual components
of the electromagnetic field. Outside the cylinder these equations are supplemented by the constitu-
tive relations D = ¢(E, B = 14H and we have to get the forrn of the constitutive relations inside the
cylinder.

As previously said, we use the Trocheris-Takeno description [14,15] of rotations between the
laboratory frame K and the corotating Frenet-Serret frame K’ in which the dielectric is at rest

r=r', z=z', ¢=coshfp —sinhf-L, x, =—sinhBre’ +cosh fx; %)
r
with B =Qr/c, xo =ct, xi =ct’. The small velocity approximation of (7) consistent with relativ-

ity is with y =1+ 2 /2

2 11
r=r 225 g9 = or -2 @
C
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which is to the order 0(5’). Note that even neglecting the /3’-terms that is making »= 1 does not
yield the Galilean rotations: ¥ =r’,z=z". ¢= ¢’ —Qt, t=¢t". With (7) the velocity v(jv|<c) is (isis a
unit azimuthal vector)
v=csi,, s=tanhf (8)
In the Frenet-Serret frame, the constitutive relations are D’=¢E’, B’= fH’ so that using the
well known transformations [16] of the electromagnetic field between two inertial frames (K’ is an
instantaneous inertial frame), we get in K

D+clv /\H:g(E +cly /\B)

B-c'vAE= ,u(H—c’lv /\D) ©
Substituting (8) into (9) and using the quantities
a(s) :(l—sz)(l—nzsz)il, b(s) :mzs(l—nzsz)il, w =&, m? =n -1 (10)
A simple calculation gives
D, zga(s)E, +b(s)Hz, D. zga(s)Ez —b(s)H, (1

B, = ,ua(s)H, - b(s) E., B = ,ua(s)HZ + b(s) E,
which complete Maxwell’s equations inside the cylinder.

So, taking into account the constitutive relations, one has to solve Maxwell’s equations inside

and outside the cylinder and to match the solutions on its surface to ensure the continuity of E,, H.
and D,, B,. One has in addition to satisfy the condition at infinity H = Hyi.. Now it is clear that in the
Wilsons’ experiment, the angular velocity could not be very large, so we shall tackle this problem in
the framework of small velocities.
Remark: 1t is important to note that unlike the Frenet-Serret tetrad, the Galilean corotating frame is
not an instantaneous inertial frame. So it is unjustified to work with the transformations (9) to tackle
the constitutive relations: a point also stressed in [12]. But as proved in other work [11], the an-
holonomic equations are no more covariant in this case.

3. Low-velocity approximation

To make approximations easier, we introduce the dimensionless parameter &= Qa/c where a is
the outer radius of the cylinder, then = az/a <a. As previously said, the lowest approximation
consistent with relativity is 0(¢”') because tanhB= £+ 0(4). But it is interesting to start with the
0(c?) approximation and we shall prove that for the Wilsons’ experiment both approximations give
the same result.

We get from (10) s = ar/a +0(’) and

as) =1 +0(a2) =1+a’m*r*a™ +0(a3), bs) = am’r™ +0(a2>3) (12)

Now the solutions of the two curl equations (6a) can be obtained in terms of two scalar poten-
tials y,p :

H,=0,x; H.=0.y; E.=ady, E. =ad.y (13)

The introduction of « in the definition of E is consistent with the fact that the electric field is zero for
a stationary cylinder. Substituting (12) and (13) into (11) gives

B, =pud, y+ O(az) = ,u(] +atmria )6,;( —aPmPraloy + 0(0{3)

(14a)

B, =uo, y+ O(az) = ,u(l +a?lm’ria’? )62;( —a’m*ra’'o,y + 0(053)

APEIRON Vol. 6 Nr.1-2, January-April 1999 Page 3



D = a(e@,y/ +m*ra'0, ;() + 0(0:2’3)
D, = a(gazl// +m*ra™'o, ;() + 0(0{2’3)
So, D has the same expression to the orders 0(c?) and 0(c).

(14b)

3.1 0(c’)-approximation of the magnetic potential
In this section , we work in the framework of the 0(c”) approximation, so we suppress this sym-
bol. Substituting (14a) into the divergence equation (6b) gives
Ay=0, A=r"9,(rd,)+0: (15)
So, the magnetic potential satisfies the same Laplace equation inside and outside the cylinder. Tak-
ing in to account the condition at infinity H = Hqi, we may write the solutions of (15)

How = Hoz +dje"‘ZYo(kr) f(k)dk (16a)
0
Tn = O]e””Jo(kr) g(k)dk (16b)

0
Jo Yo, are the Bessel functions of the first and second kind of order zero. The functions f{k) and g(k)
to be determined by the boundary conditions on the surface » = a of the cylinder are supposed to
ensure uniform convergence so that one may take the derivatives under the integral sign. In addition,
we write

Hyz =2H, |e™ Jy(kr)o'(k)dk (17)
0
where 0'(k) is the derivative of the Dirac distribution. We recall that

:jf(x)&(x)dx =—@ (18)

and it is easy to check the correctness of (17) since Jy(0) = 1, J'o(0) =—J/;(0) = 0. Then, using (16)
and (17), the continuity of H; on r = a implies

2H,J,(ka)o'(k) + f(k) Yo(ka) = g(k)J,(ka) (192)
while using the relations J'y = —J;, ¥’y =—Y; we get from the continuity of B, with z4. = 14/ 14
2H,J\(ka)o'(k) + f(k)Yi(ka) = w.g(k)J\(ka) (19b)
From Eqs.(19) a simple calculation gives with w(ka) = [Y] Jo — 1. Yo, ] o
g(k) =2Hyw™(ka)[ YiJy - ¥y J,],, 0'(k) = -4 How™'(ka) 0 (kk) (20a)
wka
(k) =2(u, —1)How™(ka)J,( ka) J,(ka)o'(k) (20b)

In (20a) we used the fact that the numerator of g(k) is the Wronskian of the Bessel functions ¥ and J.
Substituting (20) into (16) would supply the magnetic potential but according to (18) we need the
expressions of f{k) and g(k) in the neighborhood of k£ = 0. We use the following approximations [17]
in which yis the Euler constant

Jo(x) =1 +0(x2), Ji =§+0(x3)

1 2 1
Y(x) = 27r‘1(7/ +%) +(x2 logx), Yi(x) = — +x7r‘l(g +%) +0(x2 logx)

(21a)
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so that:
w{ka) = —%[1 +0(k*a? logka) | 21b)

Taking into account (21), the expressions (20) become
(k) =-7(u, —1) Hok*@5'(k) +0(k* e logka) (22)

Substituting (22) into (16) and using (18) gives at once g, = yow = Hoz. So to the order 0(c7) the
magnetic potential is the same inside and outside the cylinder and according to (13)
H = H = 0: H = H:,um = HO (23)

rin r,0ut z,in

3.2 0(cA)-approximation of the electric potential
Substituting (14b) into the divergence equation (6b) and using (23) show that the electric poten-
tial inside the cylinder satisfies the Poisson equation
Ay, =—2m*(ag) " H, 24)

with the solution

[e)

Wiy = Je‘kz [—mz r?(ae) - HyS(k) + g(k)Jo(kr) ]dk (25a)
0
and since outside the cylinder Ay, =0

[=%]

Vou = [ £ (k) Yo (hr)dk (25b)

0
The continuity of E. for r = a gives
—m*as™ Hyo (k) + g(k)Jo(ka) = f(k) Y, (ka) (26)

The continuity of D, requires more attention. First since y;, = Hyz we have according to (17)
0. =2Hy Ie"”JO(kr)S(k)dk @7)
0
Then, substituting (25a) and (27) into (14b) gives

D,y =—atck [e [2mHack) ™ Hof1 - Jokr) (k) + (k)1 (k) ik

p (28a)
= —ask [+ g(k).J (kr)dk
0
since the coefficient of &k) is null for £ =0 (Ax) &x) =A0) Ax)). Now according to (25b)
Dy ot = —tok j e (k)% (kr)dk (28b)
0

and the continuity of D, for » = a implies with &.= &g
&.8(k)J\(ka) = f(k) Y;(ka) (29)
Using the approximations (21) we get from (26) and (29) with w, (ka) = [ hW, —&.Y,J; ] ‘o
f(k) = mzag’lHowe’l(ka)é'(k) =0
g( k) = mzag’lHowe’l(ka) Yl(ka)5(k) = mzag’lH(ﬁ(k)
Substituting (30) into (25) gives

(30)
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~ mzHO(a2 —rz)

l//in H l//uul = O (3 1)
2ae
So, according to (13) and (31) we have to the order 0(c?)
Qm*H,
Er,in = ua Ez,in = Er,()ur = Ez,()ur = 0 (32)

ce
Since m” = g1— 1 one checks at once that £, ,, is the expression (2).

3.3 0(a3)-approximation
One sees easily that the 0(c”') approximation supplies the same result. Indeed according to (28)
and (30): D,.;, = D,..,, = 0. Then, using (11) and (12):

r ‘9“(5) (33)
__amr H, + 0(0{2’3)
ea

However, it is interesting to prove this result directly. First, since according to (14b) D, and D, do
not change, the electric potential still satisfies the Poisson equation

eAy +2m*a'0,y =0 (34)
Now substituting the 0(¢') approximation (14a) into the divergence equation (6b) gives
,u(l +aPm*ria’ )A;( +2a’mra0,y —2a*m* a0,y =0 (35)
Multiplying this equation by (I — &?m’”a*) we get to the order 0(c’)
wy +2a°m’rao, y —2a*m*a™'0,y =0 (36)
We look for the solutions of Eqs.(34) and (36) in the form
=1+, y=y'+aiy G7

in which #°, v/ are the 0(c7") approximations of the magnetic and electric potentials satisfying re-

spectively the Laplace equation (15) and the Poisson equation (24). Substituting (37) into (34) and
(36) gives for y” and i/ the Poisson equations

UAY +2mPra 0, ° —2ma™'0.y" =0 (38a)

eAy' +2m*a ‘o, 4 =0 (38b)

but according to (23) and (32): 9, 7" =0,° =0. So Eq.(38a) reduces to Ay' =0 with the trivial

solution 7 =0 implying Ay’ =0 and finally ' = 0. Consequently, the 0(¢”’) approximation in this

problem does not change the results supplied by the 0(c?) approximation.

4. Conclusion

A careful covariant analysis of the electromagnetic field inside a hollow circular dielectric cylin-
der rotating with a small uniform angular velocity around a static magnetic field parallel to its axis
confirms the expression of the electric field previously obtained by noncovariant methods. So, if
there exists a conflict between this result and the measurements made by the Wilsons in 1913, a new
experiment should be carried out with better accuracy. A persistent discrepancy would imply that the
theory of electrodynamics in rotating media has to be revised.
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NINTH LOMONOSOV CONFERENCE ON
ELEMENTARY PARTICLE PHYSICS

The 9th Lomonosov Conference on Elementary Particle Physics will be held from 20
to 26 September, 1999 at Moscow State University, Moscow, Russia.

The conference is organized by the Interregional Centre for Advanced Studies (Mos-
cow) and the Faculty of Physics of the Moscow State University and supported by the
Joint Institute for Nuclear Research (JINR, Dubna), the Institute for Theoretical and
Experimental Physics (ITEP, Moscow), the Institute for High Energy Physics (IHEP,
Protvino) and the Institute for Nuclear Research (INR, Moscow).

The Lomonosov Conferences bring together about 100 theorists and experimentalists
to review the present status and future prospects in elementary particle physics. The
program of the 9th Lomonosov Conference will include:

Electroweak Theory, Tests of Standard Model and Beyond

Heavy Quark Physics

Non-Perturbative QCD

Neutrino Physics

Astroparticle Physics

Quantum Gravity Effects

This conference is the last of the series of the Lomonosov Conferences on Elemen-
tary Particle Physics in the XX century. As a result, in addition to the Invited Talks (30
min), Session (20 min) and Brief (15 min) Reports there will be a special session of
General Talks (50 min) devoted to reviews of the most fundamental results and ideas
in elementary particle physics of the century now ending.

Interested persons are kindly asked to send (before April 20, 1999) the title(s) and
abstract(s) of the proposed talks to the Conference Secretary Andrey Egorov by e-
mail address: ane@srdlan.npi.msu.su

Application forms (which will be used by Organizing Committee for preparation of
official invitations for obtaining a visa to visit Russia) for participants are sent by the
Organizing Committee upon request by e-mail. Personal data and information re-
quired by the application forms should be sent to the Organizing Committee before
April 20.

Alexander Studenikin

Department of Theoretical Physics
Moscow State University

119899, Moscow, Russia

phone: (007-095) 939-50-47, 939-31-77
fax: (007-095) 932-88-20

E-mail: studenik@srdlan.npi.msu.su
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