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Additional arguments against the traditional representation of the contrac-
tion of longitudinal sizes of moving bodies are presented. It is shown that the
use of noncovariant contracted length leads to violation of the laws of elec-
tric charge and energy conservation.

“Although the totality of events exists with re-
spect to a certain definite inertial system, this
totality is no longer independent of the choice of
inertial system. Four-dimensional continuum
does not disintegrate objectively into sections,
among which the sections containing all simul-
taneous events would be.”

Einstein [1]
Introduction

Recently new and, one might say, the most convincing proofs of contracted length
noncovariance have been obtained. It has been shown that the traditional (Einsteinian)
definition of moving rod length[2] contradicts the Lorentz invariance of interval [3,4]. As
is known, this definition in fact pierces through all space correlations of relativity theory.
The generally accepted approach based upon this definition following Born [5] is named
Einstein’s theory of relativity (ETR). An alternative approach (radar formulation) is based
upon the other “radar definition” of length [6,7]. Its consequence is the increase (and not
contraction) of the longitudinal sizes of moving bodies.

Earlier considerations that the traditional condition of simultaneity ( ∆t = 0 ) of two
events (endpoints of a moving rod) contradicts the principle of relativity [6]*, as it de-
pends on the reference system, have already been said. As it is easy to be convinced, this
statement is also contained in the first sentence of the given quotation [1]. What is more,
the sense of the second sentence is that simultaneous events cannot objectively present
the rod in different systems which are different sections of a four-dimensional contin-
                                                          
* In this connection, see also [8].
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uum. Hitherto, these “physical arguments”, however, are disregarded as the first proof of
interval (corresponding to contracted length) noninvariance [9].

The relativistic interval is the main invariant of relativity theory, and so it is also
named the fundamental invariant. By definition, the interval is the quantity which does
not change when transitting from one inertial reference system to another. Since this
transition is related to changing motion velocity, the interval invariance must mean its
independence of velocity, i.e. constancy.

In accordance with the Einsteinian definition, the four-component quantity in
Minkowski space

l c t x ln
c

c= =∆ ∆, , , , , ,0 0 0 0 0b g b g (1)
corresponds to the rod oriented and moving along the x axis. Taking into account the
contraction formula

l lc = −* 1 2 1 2βc h , (2)
where l*  is the rod length at rest and βc  is its velocity, we have the corresponding inter-
val

s lc = −* 1 2 1 2βc h . (3)
Based on (3), we conclude that the traditional definition of moving rod length does not
satisfy the Lorentz invariance requirement. The latter result can be obtained in another
way, taking into account that we have

s lc
* *=

when passing ( β → 0 ) to the rest system of the rod. The comparison of (3) and (4) tells us
directly about the noninvariance of “contracted interval.” In other words, the four-
component quantity lc

n  is not a 4-vector [9,10].
Thus, we are obliged to refuse the generally accepted representation of the contraction

of longitudinal sizes in motion as it contradicts the very substance of relativity theory. But
these new, one would think, indisputable “mathematical arguments” do not meet a
proper understanding. We hope that the “physical considerations” presented below turn
out to be more convincing.

Violation of the law of charge conservation
Let us consider the element of a linear conductor (at rest in the S* -system and di-

rected along the x*  axis) carrying a current of density j jI
*

*= − − . The densities of electrons
ρ −

*  and rest ions ρ +
*  are equal, and the total density is ρ* = 0 . Thus, from the point of

view of the S-system the wire is neutral.
∆ ∆q V* * *= =ρ 0 , (5)

where ∆q*  is the charge, and ∆V * , the volume of the considered element of the con-
ductor.
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Now let us transit to a system (S) where conduction electrons are at rest j − = 0 . Based
on the transformation formulae for components j i , for the total density in the S-system,
we obtain

ρ ρ ρ ρ β γ= + = −− + −
* 2 , (6)

where βc  is the velocity of the conductor in the S-system, γ β= − −1 2 1 2c h .
Using the volume contraction formula ∆ ∆V V= −*γ1  corresponding to (2), we con-

clude that from the viewpoint of the S-system, the wire has a positive charge (see, e.g., [5])
∆ ∆q = − −ρ β* 2 V* . (7)

Thus, it is evident that in the framework of the ERT the invariance of an electric
charge is violated. What is more, this result may be interpreted otherwise. A neutral cur-
rent-carrying conductor acquires a charge (without removing electrons to the outside) as
a result of motion. In other words, the use of the noncovariant quantity has led us to the
violation of the law of charge conservation.

In the framework of the radar formulation [11]
∆ ∆q j Vi

i= , (8)
where the 4-vector of a volume element

∆ ∆ ∆V V Vi = −* *, , ,γ β γ0 0c h. (9)
As a result, ∆q = 0 , i.e., the demand of charge Lorentz invariance is really fulfilled, and,
consequently, the charge is conserved.

Violation of the law of energy conservation
The electrostatic energy of a plane-parallel capacitor whose plates are normal to the

x* -axis is equal to

E V
Gp

lx* * *
*

*= =ε σ
Ec h2

8
,

where ε* is the energy density of an electric field Ex
* , σ  is the area of the plates, l*  is the

gap between them. Since Ex
*  (and, consequently, ε* ) and σ  are not transformed when

passing to the moving S-system, the formula for energy of a moving capacitor is practi-
cally defined by l . If, in accordance with ETR, we take contraction length lc , then evi-
dently we come to a contradiction with the known relativistic formula E E= *γ. What is
more, in this case the energy of a moving capacitor is smaller than its energy at rest.
Though, as known, in order to set a capacitor in motion, it is necessary to expend some
energy (it is transferred to the capacitor).

Thus, in the framework of ERT we also have a contradiction with the law of energy
conservation, resulting again from the use of noncovariant contracted length.

A similar difficulty does not arise [7] if l  is given by the radar length lr , obeying the
elongation formula l lr = *γ.
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Let us observe that while calculating the energy of the gravitational field, even the use
of the covariant expression (9) for a volume element does not remove the indicated diffi-
culty. The fact is that in this case, the energy density of the field is given by the compo-
nent of the energy-momentum pseudotensor (see e.g., [12]). The noncovariance of the
known expression for the equivalence of mass and energy should also be noted. If even
in one reference system (at c = 1), the corresponding values are equal, in all other systems
this equality is violated as the mass (being a scalar) remains constant, but the energy
changes (like the component of a 4-vector).

Conclusion
As it follows from the presented results, the generally accepted idea of the contraction

of moving bodies contradicts the laws of electric charge and energy conservation. There-
fore we are obliged to retract it, replacing it by the concept of covariant radar length ac-
cording to which longitudinal sizes increase. Thus, as one can say after 90 years, one of
the main conclusions of relativity theory must be abandoned.
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