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Premise 

Probably all of us, at least when we were young, 
have sometimes imagined that every small particle of 
matter could be, at a suitably reduced scale, a whole 
cosmos. This idea has very ancient origins. It is already 
present, for example, in some works by Democritus of 
Abdera (about 400 B.C.). Democritus, simply inverting 
that analogy, spoke about huge atoms, as big as our 
cosmos. And, to be clearer, he added: if one of those 
super-atoms (which build up super-cosmoses) aban-
doned his “giant universe” to fall down on our world, 
our world would be destroyed... 

Considerations like these are linked to fantasies 
about the physical effects of a dilation or contraction of 
all the objects which surround us, or of the whole 
“world”. Such fantasies have also been exploited by 
fiction writers: from J. Swift, the narrator of Samuel 
Gulliver’s travels (1727), to I. Asimov. It is probably 
because of the great diffusion of such ideas that, when 
the planetary model of the atom was proposed, it 
achieved a great popular success. 

Actually, we encounter such intuitive ideas in the 
scientific arena too. Apart from Democritus, cited above, 
let us recall the old conception of a hierarchy of uni-
verses—or rather of cosmoses—each endowed with a 
particular scale factor (let us think, for instance, of a series 
of Russian dolls). Nowadays, we can really recognize 
that the microscopic analysis of matter has revealed 
grosso modo a series of “Chinese boxes”: so that we are 

entitled to suppose that something similar may be met 
also when studying the universe on a large scale, i.e., in 
the direction of the macro as well as the micro. Hierarchi-
cal theories were formulated for example by J.H. Lam-
bert in 1761 and, later on, by V.L. Charlier in 1908 and 
1922, and by F. Selety in 1922-24; followed more re-
cently by O. Klein, H. Alfvén and G. de Vaucouleurs, 
up to the works of Salam and co-workers (Salam & 
Strathdee 1977, 1978; Salam 1978, 1977), Sinha & 
Sivaram (1979), Markov (1966), Recami and col-
leagues (Recami & Castorina 1976; Mignani 1976; 
Caldirola, Pavsic & Recami 1978a, 1978b; Caldirola & 
Recami 1979; Recami 1979), Ivanenko and collabora-
tors (Ivanenko 1979), Sachs (1982), J.E. Charon, H. 
Treder, P. Roman, Oldershaw (1896), and others (see 
also Rosen 1980). 

Very recently, we discovered such issues frequently 
discussed in this Journal (Kokus 1994; Jaakkola 1987; 
Browne 1994; Broberg 1987; Cf. also Huber 1992; 
Pesteil 1991; Pecker 1988: Broberg 1993), and we 
would, therefore, like to make our own approach known 
to this Journal’s readers. In particular, it is interesting 
enough that some of the starting points or results in 
Broberg (1987), Browne (1994), Jaakkola (1987) and 
Kokus (1994) are analogous to—even if independent 
of—the ones presented by Caldirola, Pavsic & Recami 
(1978a). 
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Introduction 

In this paper we confine ourselves to examine the 
possibility of considering elementary particles as micro 
universes (see e.g. Recami 1983a, 1983b, 1979; Cf. also 
Ammiraju, Recami & Rodrigues 1983): that is to say, 
the possibility that they be similar—in a sense to be 
specified—to our cosmos. More precisely, we shall refer 
to the thread followed by P. Caldirola, P. Castorina, A. 
Italiano, G.D. Maccarrone, M. Pavsic, V.T. Zanchin 
and ourselves (for an extended summary of that theory, 
see e.g. Recami 1982, and refs. therein; Recami, 
Martínez & Zanchin 1986; and Recami & Zanchin, 
1992; see also Recami & Zanchin 1986). 

Let us recall that Riemann, as well as Clifford and 
later on Einstein (see e.g. Einstein 1919) believed that 
the fundamental particles of matter were the perceptible 
evidence of a strong local space curvature. A theory 
which stresses the role of space (or, rather, space-time) 
curvature already does exist for our whole cosmos: 
General Relativity, based on Einstein’s gravitational 
field equations, which are probably the most important 
equations of classical physical theories together with 
Maxwell’s electromagnetic field equations. While much 
effort has already been made to generalize Maxwell’s 
equations, passing for example from the electromag-
netic field to Yang-Mills fields (so that almost all mod-
ern gauge theories are modeled on Maxwell’s equa-
tions), on the contrary, the Einstein equations have 
never been applied to domains other than gravitation. 
Nevertheless, like any differential equations, they do not 
contain any in-built fundamental length, so they can be 
used a priori to describe cosmoses of any size. 

Our first purpose is to explore whether it is possible 
to apply successfully the methods of general relativity 
(GR) to the domain of the so-called nuclear, or strong, 
interactions, in addition to the world of gravitational 
interactions (for a similar approach, see also Sachs 1981, 
1982); namely, to the world of the elementary particles 
called hadrons. A second purpose is linked to the fact 
that the standard theory (QCD) of strong interactions 
has not yet fully explained why the hadron constituents 
(quarks) seem to be permanently confined in the interior 
of those particles; in the sense that nobody has yet seen 
an isolated “free” quark, outside a hadron. To explain 
that confinement, it has been necessary to invoke phe-
nomenological models, such as the so-called “bag” 
models, in their MIT and SLAC versions, for instance. 
The “confinement” could be explained, on the contrary, 
in a natural way and on the basis of a well-grounded 
theory like GR, if we associated with each hadron (pro-
ton, neutron, pion, etc.) a particular “cosmological 
model”. 

The Model with Micro-Universes 

Let us now try to justify the idea of considering the 
strongly interacting particles (i.e., hadrons) as micro-
universes. We find a first motivation if we think of the 
so-called “large number coincidences”, already known 
since several decades and stressed by H. Weyl, A.I. Ed-
dington, O. Klein, P. Jordan, P.A.M. Dirac, and others. 

The most famous among those empirical observa-
tions is that the ratio R/r between the radius 
R€≈€1026 m of our cosmos (gravitational universe) and 
the typical radius r€≈€10–15 m of elementary particles is 
grosso modo equal to the ratio S/s between the strength S 
of the nuclear (“strong”) field and the strength s of the 
gravitational field (we will give later a definition of S, s): 

 ρ ≡ ≈R
r

S
s

. (1) 

This immediately suggests the existence of a similarity, 
in a geometrico-physical sense, between cosmos and 
hadrons. As a consequence of such similarity, the “the-
ory of models” tells us—by exploiting simple dimen-
sional considerations—that, if we contract our cosmos 
by the quantity 
 ρ = R/r€≈€1041 
(i.e., if we transform it into a hadronic micro-cosmos 
similar to the previous one), the field strength would 
increase in the same ratio, such that the gravitational 
field would be transformed into the strong field. 

If we observe, further, that the typical duration of a 
decay is inversely proportional to the strength of the 
interaction itself, we are also able to explain why the 
mean-life of our gravitational cosmos (∆t €≈€1018 s: 
duration—for example—of a complete expan-
sion/contraction cycle, if we accept the theory of the 
cyclic big bang) is a multiple, with the same ratio, of the 
typical mean-life (∆τ€≈€10–23 s) of the “strong micro-
universes”, or hadrons: 
 ∆t ≈€ρ ∆τ. (2) 

It is also interesting that, from the self-consistency of 
these deductions—as we shall show later—the mass M 
of our cosmos can be deduced to be equal to ρ 
2 ≈€(1041)2 times the typical mass M of a hadron: a fact 
that seems to agree with reality, and constitutes a further 
“numerical coincidence”, the so-called Eddington rela-
tion. Another numerical coincidence is shown and 
explained in Italiano & Recami (1984). 

By making use of Mandelbrot’s (1983) language and 
of his general equation for self-similar structures, what 
precedes can be mathematically translated into the 
claim that cosmos and hadrons are systems, with scales 
N and N – 1, respectively, whose “fractal dimension” is 
D = 2, where D is the self-similarity exponent that 
characterizes the hierarchy. As a consequence of all this, 
we shall assume that cosmos and hadrons (both treated, 
of course, as finite objects) be similar systems: i.e. that 
they be governed by similar laws, differing only for a 
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“global” scale transformation which transforms R into r 
and gravitational field into strong field. [To fix our 
ideas, we may temporarily adopt the naïve model of a 
“Newtonian ball” in three-dimensional space for both 
cosmos and hadrons. Later on, we shall adopt more 
sensible models, for example Friedmann’s]. We might, 
incidentally, add that we should be ready a priori to ac-
cept the existence of other cosmoses besides ours: recall 
that mankind in every epoch has successively called 
“universe” his valley, the whole Earth, the solar system, 
the Milky Way and today (with the same simple-
minded view) our cosmos, as we know it on the basis of 
our observational and theoretical instruments.** 

Thus, we arrive at a second motivation for our 
theoretical approach: That physical laws should be 
covariant (= form invariant) under global dilations or 
contractions of space-time. We can easily realize this if 
we notice that: (i) when we dilate (or contract) our units 
of space and time, physical laws, of course, should not 
change their form; (ii) a dilation of units is totally 
equivalent to a contraction (leaving now “meter” and 
“second” unaltered) of the observed world. 

Actually, Maxwell’s equations of electromagnet-
ism—the most important equations of classical physics, 
together with Einstein’s equations, as already noted—
are by themselves also covariant under conformal trans-
formations and, in particular, under dilations. In the 
case when electric charges are present, this covariance 
holds provided that charges themselves are suitably 
“scaled”. Analogously, also Einstein’s gravitational equa-
tions are covariant†† under dilations: provided that, 
again, in the presence of matter and of a cosmological 
term Λ, they too are scaled according to correct dimen-
sional considerations. The importance of this fact was 
realized by Einstein himself, who in connection with 
his last unified theory wrote, two weeks before his 
death: “From the form of the field [gravita-
tional + electromagnetic] equations it follows immediately 
that: if gik(x) is a solution of the field equations, then 
also gik(x/α), where α is a positive constant, is a solution 
(“similar solutions”). Let us suppose, for example, that 
gik represents a finite crystal embedded in a flat space. It 
is then possible that a second ‘universe’ exists with an-
other crystal, identical with the first one, but dilated α 

                                                                 
** This clarifies that our geometrico-physical similarity holds be-

tween two classes of objects of different scale (hadrons and cos-
moses), in the sense that the factor ρ  will vary according to the 
particular cosmos and hadron considered. This will be impor-
tant for practical applications. Finally, let us recall that in Man-
delbrot’s philosophy, analogous objects do exist at every hierar-
chical level, so that we can conceive a particular type of cosmos 
for each particular type of hadron, and vice versa . As a conse-
quence, we should expect ρ  to change a little in each case (for 
example, depending on the type of hadron considered). 

†† Notice that we do not refer here to the usual “general covari-
ance” of the Einstein equations (which are supposed to hold in 
our cosmos), but to their covariance with respect to transforma-
tions (dilations or contractions) between—for example—our 
cosmos and the hadronic micro-cosmos. 

times with respect to the former. As long as we confine 
ourselves to considering a universe containing only one 
crystal, there are no difficulties: we just realize that the 
size of such a crystal (standard of length) is not deter-
mined by the field equations…” These lines are taken 
from Einstein’s preface to the Italian book Cinquant’anni 
di Relatività (Pantaleo 1955). They were written in 
Princeton on April 4, 1955, and stress the fact, already 
mentioned by us, that differential equations—like all 
the fundamental equations of physics—do not contain 
any in-built “fundamental length”. In fact, Einstein 
equations can describe the internal dynamics of our 
cosmos, as well as of much bigger super-cosmoses, or of 
much smaller micro-cosmoses (suitably “scaled”). 

A Hierarchy of “Universes” 

As a first step for better exploiting the symmetries of 
the fundamental equations of classical physics, let us 
therefore fix our attention on the space-time dilations 
 ′ =x xµ µρ  (3) 
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with x t x y zµ ≡ ; , ,b g  and µ = 0,1,2,3, and explicitly 

require physical laws to be covariant with respect to 
them: under the hypothesis, however, that only dis-
crete values of ρ are realized in nature. As before, we 
are moreover supposing that ρ is constant as the space 
or time position varies (global, besides discrete, dila-
tions). 

Let us recall that natural objects interact essen-
tially through four (at least) fundamental forces, or 
interactions: the gravitational, the “weak”, the elec-
tromagnetic and the “strong” ones; here listed accord-
ing to increasing strength. We can express the 
strengths by pure numbers, in order to compare them 
with one another. For instance, if we choose to define 
each strength as the dimensionless square of a “vertex 
coupling constant”, the electromagnetic strength is 
measured by the (dimensionless) coefficient 
Ke2/h€≡€α ≈€1/137, where e is the electron charge, h 

the reduced Planck constant, c is the light speed in 
vacuum and K is the electromagnetic interaction 
universal constant (in the International System of 
units, K = (4π εo)-1, with εo = vacuum dielectric con-
stant). Here we are interested in particular in the 
gravitational and strong interaction strengths: 
 s€≡€Gm2/hc;     S€≡€Ng2/hc, 

where G and N are the gravitational and strong uni-
versal constants, respectively; quantities m and g rep-
resenting the gravitational charge ( = mass) and the 
strong charge (see note ‡‡ and Figure 1; and cf., e.g., 
Recami 1979), respectively, of one and the same had-
ron: for example of a nucleon NN or of a pion π. More 
precisely, we shall often adopt in the following the 
convention of calling M and g “gravitational mass” and 
“strong mass”, respectively. 

Let us consider, therefore, two identical particles en-
dowed with both gravitational (m) and strong (g) mass, 
i.e., two identical hadrons, and the ratio between the 
strengths S and s of the corresponding strong and gravi-
tational interactions. We find S/s€≡€Ng2/Gm2 ≈€1040÷41, 
so that one verifies that ρ€≡€R/r ≈€S/s. For example for 

                                                                 
‡‡ Let us recall that the hadron constituents (2 for mesons and 3 for 

baryons) were named quarks by M.Gell-Mann. This Anglo-
Saxon word, which usually means mush or also curd, is usually 
ennobled by literary quotations (for example, Gell-Mann was in-
spired—as is well known—by a verse from J. Joyce’s Finnegans 
wake, 1939). Here we wish to note that Goethe had used the 
word properly in his Faust , verse 292, where Mephistopheles re-
ferring to mankind exclaims: “In Jeden Quark begräbt er seine 
Nase”! 

 By considering quarks to be the real carriers of the strong charge 
(cf. Figure 1), we can call “colour” the sign sj of the strong charge 
(Recami 1979); namely, we can regard hadrons as endowed with 
a zero total strong charge, each quark possessing the strong 

charge g s gj j j=  with Σsj  = 0. Therefore, when passing from 

ordinary gravity to “strong gravity”, we shall replace m by 
g = ngo, quantity go being the average magnitude of the constituent 
quarks rest-strong-charge, and n their number (Recami 1979). 

m = mπ one gets Gm2/hc ≈€1.3€×€10–40, while the ppπ 

or ππρ (or quark-quark-gluon: see below) coupling 
constant squares are Ng2/hc ≈€14 or 3 (or 0.2), respec-

tively. 
At this point, we can make some simple remarks. 

First of all, notice that, if we put conventionally m€≡€g, 
then the strong universal constant N becomes 
 N ≈€ρ G€≈€hc/ mπ

2 . (4) 
On the other hand, if we choose units such that 

[N] = [G] and moreover N = G = 1, we obtain 
g = m√ρ and, more precisely (with n = 2 or n = 3), 
 gο = g/n ≈€√hc/G€≡€Planck mass, 

which tells us that—in suitable units—the so-called 
“Planck mass” is nothing but the magnitude of the rest 
strong-mass [ = strong charge] of a typical hadron, or 
rather of quarks (see note ‡‡). 

From this point of view, we should not expect the 
“micro black-holes” (with masses of the order of the 
Planck mass), predicted by various authors, to exist; in 
fact, we already know of the existence of quarks, whose 
strong charges are of the order of the Planck mass (in suit-
able units). Moreover, the fact—well known in standard 

 
Figure 1 – “Coloured” quarks and their strong charge – This scheme 
represents the complex plane (see note ‡‡; and cf., e.g., Recami 
1979; Recami & Zanchin 1992) of the sign s of the quark strong-
charges gj in a hadron. These strong charges can have three signs, 
instead of two as in the case of the ordinary electric charge e. They 

can be represented, for instance, by s i1 3 2= −e j ; 

s i2 3 2= +e j ; s i3 = − , which correspond to the arrows sepa-

rated by 120° angles. The corresponding anti-quarks will be en-
dowed with strong charges carrying the complex conjugate signs 
s1 , s2 , s3 . The three quarks are represented by the “yellow” (Y), 
“red” (R) and “blue” (B) circles; the three anti-quarks by the 
“violet” (V), “green” (G) and “orange” (O) circles. The latter are 
complementary to the former corresponding colors. Since in real 
particles the inter-quark forces are saturated, hadrons are white. 
The white colour can be obtained either with three-quark struc-
tures, by the combinations YRB or VGO (as it happens in baryons 
and antibaryons, respectively), or with two-quark structures, by 
the combinations YV or RG or BO [which are actually quark-
antiquark combinations], as it happens in mesons and their anti-

particles.‡‡  
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theories—that gravitational interactions become as 
strong as the “strong” ones for masses of the order of the 
Planck mass in our opinion simply means that the strong 
gravity field generated by quarks inside hadrons (strong 
micro-universes) is nothing but the strong nuclear 
field. 

“Strong Gravity” 

A consequence of the above is that inside a hadron 
(i.e., when we want to describe strong interactions 
among hadron constituents) it must be possible to adopt 
the same Einstein equations which are used to describe 
gravitational interactions inside our cosmos; provided 
the gravitational constant G (or the masses) and the 
cosmological constant Λ are suitably scaled, together 
with space distances and time durations. 

Let us now recall that Einstein’s equations for grav-
ity essentially state the equality of two tensor quantities: 
the first describing the geometry (curvature) of space-
time, and the second—which we will call the “matter 
tensor”, GTµν—describing the distribution of matter: 

 Rµν – 1
2

½ gµν Rρ
ρ – Λgµν = –kGTµν;    k

c
≡L

NM
O
QP

8
4

π
. (5) 

As is well known, G ≈€6.7€×€10–11 m3/(kg × s2), while 
Λ€≈€10–52 m–2. 

Inside a hadron, therefore, equations of the same 
form will hold, except that instead of G we will have (as 
we already know) the quantity N€≈€hc/mπ

2, and instead 
of Λ the “strong cosmological constant” (or “hadronic 
constant”) λ will appear: 
 N€≡€ρ1G ;     λ€≡€ρ2Λ;      ρ1€≈€ρ, (6) 
so that Λ€≈€1030 m–2 = (1 fm)–2, or λ-1€≈€0.1 barn. 

For the sake of brevity, we will call Sµν€≡€NTµν the 
“strong matter tensor”. 

The preceding can be directly applied, with a satis-
factory degree of approximation, to the case—for exam-
ple—of the pion: i.e., to the case of the cosmos/pion 
similarity. Almost as if our cosmos were a super-pion, 
with a super-quark (or “metagalaxy”, adopting 
Ivanenko’s terminology) of matter and one of anti-
matter. Let us recall however that, as we already noted 
above, the parameter ρ can vary according to the par-
ticular cosmos and hadron considered. Analogously Λ, 
and therefore λ, can vary too: with the further conse-
quence that a priori their sign can also change, depend-
ing on the object (cosmos or hadron) under considera-
tion. 

As far as ρ1 is concerned, an even more important 
remark has to be made. Notice that the gravitational 
coupling constant Gm2/hc (experimentally measured in 

the case of the interaction of two “tiny components” of 
our particular cosmos) should be compared with the 
analogous constant for the interaction of two tiny com-
ponents (partons? partinos?) of the corresponding had-

ron, or rather of a particular constituent quark. That 
constant is unknown to us. We know however, for the 
simplest hadrons, the quark-quark-gluon coupling 
constant: Ng2/hc ≈€0.2. As a consequence, the best value 

for ρ1 we can predict —up to now— for these hadrons is 
ρ1 ≈€1038÷1039 [and, in fact, 1038 is the value which has 
provided results closest to the experimental data]: a 
value which, however, will vary—we repeat—with the 
particular cosmos and the particular hadron chosen. 

The already mentioned “large numbers” empirical 
relations, which link the micro- with the macro-
cosmos, have been obtained by us as a by-product of our 
scaled-down equations for the interior of hadrons, and 
of the ordinary Einstein equations. Notice, once more, 
that our “numerology” connects the gravitational inter-
action with the strong interaction, and not with the elec-
tromagnetic interaction (as Dirac suggested). It is note-
worthy that the strong interaction, like gravity—but 
differently from electromagnetism—is highly non-
linear and can be associated with non-Abelian gauge 
theories. One of the purposes of our theoretical ap-
proach consists, incidentally, in proposing an ante lit-
teram geometrical interpretation of those theories. 

Before going on, let us specify that the present ge-
ometrization of the strong field is justified by the circum-
stance that the “Equivalence principle” (which recog-
nizes the identity, inside our cosmos, of inertial and 
gravitational mass) can be extended to the hadronic 
universe in the following way. The usual Equivalence 
principle can be understood, according to Mach, think-
ing of the inertia mI of a given body as due to its interac-
tion with all the other masses of the universe: an inter-
action which in our cosmos is essentially gravitational; 
so that mI coincides with the gravitational mass: 
mI€≡€mG. Inside a “hadronic cosmos”, however, the 
predominant interaction among its constituents is the 
strong one; so that the inertia mI of a constituent will 
coincide with its strong charge g (and not with mG). We 
shall see that our generalization of the Equivalence 
principle will be useful for geometrizing the strong field 
not only inside a hadron, but also in its neighborhood. 

Both for the cosmos and for hadrons, we shall adopt 
Friedmann-type models; taking advantage of the fact 
that they are compatible with the Mach Principle, and 
are embeddable in 5 dimensions. 

The Interior of a Hadron 

Let us see some consequences of our Einstein-like 
equations, re-written for the strong field, and therefore 
valid inside a hadron: 

 Rµν – 1
2

gµν Rρ
ρ – Λ€gµν = –λSµν ;     [Sµν€≡€NTµν].(7) 

In the case of a spherical constituent, i.e. of a spheri-
cally symmetric distribution g’ of “strong mass”, and in 
the usual Schwarzschild-deSitter r,t coordinates, the 
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known geodesic motion equations for a small test-
particle (let us call it a parton, with strong mass g”) tell 
us that it will feel a “force” easy to calculate (Recami 
1982 and refs. therein; Recami, Martínez & Zanchin 
1986; Italiano et al. 1984; Ammiraju et al. 1991; Zanchin 
1987), which for low speeds [static limit: v<<c] reduces to 
the (radial) force: 

 F c g
Ng
c r

r
Ng

c r
r= − ′′ −

′
+F

HG
I
KJ

′
+F

HG
I
KJ

1
2

1
2 1

3
2 2

3
2

2
2

2 2λ λ  (8) 

Notice that, with proper care, also in the present case 
one can introduce a language in terms of “force” and 
“potential”; for example in Eq. 8 we defined 
F€≡ g”d2r/dt2. In Figure 2 the form of two typical poten-
tials yielded by the present theory is depicted [cf. Eq. 8’]. 

At “intermediate distances”—i.e., at the Newtonian 
limit—this force simply reduces to F ≈€–½ c2g” 
(2Ng’/c2r2 + 2λr/3), i.e. to the sum of a Newtonian term 
and an elastic term à la Hooke. Let us notice that, in this 
limit, the last expression is valid even when the test 
particle g” does not posses a small strong mass, but is—
for example—a second quark. Otherwise, our expres-
sions for F are valid only approximately when g” is also a 
quark; nevertheless, they can explain some important 
features of the hadron constituent behaviour, for both 
small and large values of r. 

At very large distances, when r is of the same order of 
(or greater than) the considered hadron radius [r≥∼10–13 
cm ≈ 1 fm], whenever we confine ourselves to the sim-
plest hadrons (and thus choose λ€≈€1030 m–2; 
N ≈€1038÷39 G), we end with an attractive radial force 
which is proportional to r: 
 F€≈€–g”c2λr/3. (9) 
In other words, one naturally obtains a confining force 
(and a confining potential V÷r2) able a priori to explain 
the so-called confinement of the hadron constituents (in 
particular, quarks). Because of this force, the motion of 

g” can be regarded in a first approxima-
tion as a harmonic motion; so that our 
theory can include the various and inter-
esting results already found by different 
authors for hadronic properties—for in-
stance, hadron mass spectra—just by 
postulating such a motion. 

Up to now we have supposed λ to be 
positive. But it is noteworthy that con-
finement is also obtained for negative 
values of λ. In fact, with less drastic ap-
proximations, for r ≥€∼1 fm one obtains: 

 F g c r
r Ng

c
≈ − ′′ + −

′F
HG

I
KJ

1
3 3

2
3

2
λ

λ
,

 (9’) 
where, for r large enough, the λ2 term 
dominates. However, when considering 
“not simple” hadrons (so that λ, and 
moreover N, may change values), other 

terms, such as the Newtonian term, –Ng’2/r2, or even 
the constant term +Nλ€g’2/3 which corresponds to a 
linear potential, can become important. Finally, this last 
equation predicts that, for inter-quark distances of the 
order of 1 fm, two quarks must attract each other with a 
force of some tons: quite a large force, especially when 
we recall that it has to act between two extremely tiny 
particles (the constituents of mesons and baryons), 
whose magnitude increases with distance. 

 
We now consider distances that are not too great, al-

ways at the static limit. It is then important to add to the 
radial potential the usual “kinetic energy term” (or 
centripetal potential), (J/g”)2/2r2, in order to account for 
the orbital angular momentum of g” with respect to g’. 
The effective potential (Italiano et al. 1984; Ammiraju et 
al. 1991; Zanchin 1987) between the two constituents 
g’, g” thus assumes the following form 
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which, in the region where GR reduces essentially to 
the Newtonian theory, simplifies into: 

 V
Ng g

r

J g

reff ≈ −
′ ′′

+
′′b g2

22
. 

In this case the test particle g” can stabilize (executing a 
circular motion, for example: in the next section we will 
give more details) at a distance re from the source-
constituent at which V is minimum; i.e., at the distance 
re = J2/Ng’g”2. At this distance the “effective force” van-
ishes. Thus we find, at short distances, the phenomenon 
known as asymptotic freedom: For not large distances 
(when the force terms proportional to r and to r3 become 
negligible), the hadron constituents behave as if they 
were (almost) free. If we now extrapolated, somewhat 

 
Figure 2 – The curves of two typical inter-quark potentials Veff yielded by the present 
theoretical approach: cf. Eq. 8. We also show the theoretical energy levels calculated for 
the 1 – 3s1, 2 – 3s1 and 3 – 3s1 states of “Bottomonium” and “Charmonium”, respectively 
[by adopting for the bottom and charm quarks the masses m(b) = 5.25 and m(c) = 1.68 
GeV/c2]. The comparison with experiment (Quigg 1985) is satisfactory: see the text.  
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arbitrarily, the expression for re to the case of two quarks 
[for example, |g’| = |g”| = gο ≈€(1/3)mp], we would 
obtain the preliminary estimate re€≈€(1/100) fm. Vice 
versa, by supposing—for instance in the case of baryons, 
with g€≡€m ≈€mp and N ≈€1040 G—that the equilib-
rium radius re is of the order of a hundredth of a fermi, 
one would get the Regge-like relation J/h ≈€m2 (where 

m is measured in GeV/c2). 
We can perform these calculations again, however, 

using the complete expression for Veff. First of all, we 
observe that it is possible to evaluate the radius at which 
the potential reaches its minimum also in the case 
J = 0. By extrapolation to the case of the simplest quarks 
[for which Ng2/hc ≈€0.2], we always find at least one 

solution, re€≈€0.25 fm, for λ positive and of the order of 
1030 m–2. Moving to the case J = h (which corresponds 

classically to a speed v ≈€c for the moving quark), with 
the same hypothesis we obtain the value 
 re ≈€0.9 fm. 
Actually, for positive λ it exists the above solution only. 
For negative values of λ, however, the situation is more 
complex; we summarize it for the case of the N and |λ| 
values adopted here. We find—again—at least one solu-
tion, which for J = 0 assumes the simple analytic form 
re

3 = 3Ng’/c2|λ|. 
More precisely, for λ€= –1030m–2 we find the values 

0.7 and 1.7 fm, corresponding to J = 0 and J = 1. These 
values, however, become 0.3 and 0.6 fm, respectively, 
for Λ€= –1029 m–2. In the J = 0 case, at last, two further 
solutions are found, the smaller one [for λ€= –1030 m–

2] being once more re ≈€0.25 fm. 
Recalling that mesons are made up of two quarks (q, 

q ), our approach suggests for mesons in their ground 
state—when J = 0, at least—the model of two quarks 
oscillating around an equilibrium position. It is inter-
esting to note that for small oscillations (harmonic mo-
tions in space) the dynamical group would then be 
SU(3). It is interesting, too, that the value mο = hν/c2, 
corresponding to the frequency ν = 1023 Hz, yields the 
pion mass: mο ≈€mπ. 

Analogous results must, obviously, hold for our cos-
mos (or, rather, for cosmoses which are “dual” to the 
hadrons considered). 

The Strong Coupling Constant 

Here we simply wish to add that, in the case of a 
spherically symmetric, static metric (and in the coordi-
nates in which it is diagonal), the Lorentz factor is pro-
portional to √goo, so that the strong coupling constant 
αS€≡€S in our theory (Recami & Zanchin 1994) as-
sumes the form:§§ 

                                                                 
§§ Actually, if we considered a (light) test-particle g” in the field of a 

“heavy” constituent g’ (a quark for instance), we would rather 
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since the strong mass g” depends on the speed: 
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just as the ordinary relativistic mass does. The behav-
iour of our “constant” αS(r) is analogous to that one of 
the perturbative coupling constant of the “standard 
theory” (QCD): i.e., αS(r) decreases as the distance r 
decreases, and increases as it increases, once more justi-
fying both confinement and “asymptotic freedom”. Let 
us recall that [see note §§], when g”ο = g’ο, the defini-
tion of αS is αS€≡€S = Ng’2hc. 

Since the Schwarzschild-like coordinates (t;r,θ,ϕ) do 
not correspond, as is well known, to any real observer, it 
is interesting from the physical point of view to pass to 
local coordinates (T;R,θ,ϕ) associated with observers 
who are at rest “with respect to the metric” at each point 
(r,θ,ϕ) of space: dT€≡€√gttdt; dR€≡€√–grrdr, where 
gtt€≡€goo and grr€≡€g11. These “local” observers meas-
ure a speed U€≡€ dR/dT (and strong masses) such that 
√gtt = √1 – U2, so that Eq. 11 assumes the transparent 
form 

 ′′ = ′′

−
g

g

U
o

1 2
. (11’) 

Once (thanks to the geodesic equation) the speed U is 
calculated as a function of r, it is easy to find, for exam-
ple, that for negative λ the minimum value of U2 again 
corresponds to r = [3Ng’ο/|λ|]1/3. For positive λ we get 
a similar expression, i.e., rο€≡€[6Ng’ο/λ]1/3, which fur-
nishes a limiting (confining) value of r that cannot be 
reached by any of the constituents. 

 
Lastly, we consider the case of a geodesic circular 

motion, as described by “physical” observers, i.e., by our 
local observers (even if we find it convenient to express 
everything as a function of the old Schwarzshild-
deSitter coordinates). If a is the angular momentum per 
unit of strong rest-mass, in the case of a test-quark in 
motion around the source-quark, we find the interest-
ing relation g” = g’ο√(1+a2/r2), which allows us to 
write the strong coupling constant in the particularly 
simple form (Recami & Zanchin 1994) 

 αS o
N
c

g
a
r

≅ ′ +
F
HG

I
KJh 1

2

2
. (10’) 

                                                                                                           
obtain only a square root at the denominator; namely αS ≈ 
[Ng’οg”ο /hc][√(1 – 2Ng”ο/c2r + λr2/3)]–1. When we then consider 
two heavy constituents (two quarks) endowed with the same rest 
strong-mass g”ο = g’ο, we ought to tackle the two body problem 
in GR; however, in an approximate way, and looking at an aver-
age situation, we can propose a formula like Eq. 13, where r is 
the distance from the common “centre of mass”. 
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We can now observe, for instance, that—if λ€< 0—the 
specific angular momentum a vanishes along the cus-
tomary geodesic r€≡€rqq = [3Ng’ο€/|λ|]1/3; in this case 
the test-quark can remain at rest, at a distance rqq from 
the source-quark. With the “typical” values ρ = 1041; 
ρ1 = 1038, and g’ο = mp/3 ≈€313 MeV/c2, we obtain 
rqq ≈€0.8 fm. 

Strong Interactions among Hadrons 

From the “external” point of view, when describing 
the interactions among hadrons (as they appear to us in 
our space), we are in need of new field equations able to 
account for both the gravitational and strong fields 
which surround a hadron. We need actually a bi-scale 
theory (Papapetrou 1980), in order to study, for exam-
ple, motion in the vicinity of a hadron of a test-particle 
possessing both gravitational and strong mass. 

The preceding suggests—as a first step—
representing the strong field around a source-hadron by 
means of a tensor field, sµν, like (in GR) the gravita-
tional field tensor eµν. Within our theory (see e.g. Caldi-
rola, Pavsic & Recami 1978; Recami 1982; Recami, 
Martínez & Zanchin 1986; Recami & Zanchin 1992; 
Recami 1983a, 1983b; cf. also Ammiraju, Rodrigues & 
Recami 1983), the Einstein gravitational equations are 
modified by introducing, in the neighborhood of a had-
ron, a strong deformation sµν of the metric, acting only 
on objects having a strong charge (i.e., an intrinsic 
“scale factor” f ≅€10–41) and not on objects possessing 
only a gravitational charge (i.e., an intrinsic scale factor 
f ≅€1). Outside a hadron, and for a “test-particle” en-
dowed with both charges, the new field equations are: 

 R s
c

S g Sµν µν µν µν ρ
ρλ

π
+ = − −L

NM
O
QP

8 1
24 .  (12) 

They reduce to the usual Einstein equations far from 
the source-hadron, because they imply that the strong 
field exists only in the very neighborhood of the had-
ron: namely that (in suitable coordinates) sµν → ηµν for 
r >> 1 fm. 
Linear approximation: – For distances from the 
source-hadron r ≥€∼1 fm, when our new field equa-
tions can be linearized, the total metric gµν can be writ-
ten as the sum of the two metrics sµν and eµν; or, more 
precisely (in suitable coordinates): 
 2gµν = eµν + sµν ≅€ηµν + sµν . 
The quantity sµν can then be written as 
sµν€≡€ηµν + 2hµν, with |hµν| << 1; so that 
gµν ≈€ηµν + hµν (where, we repeat, hµν → 0 for r >> 1 
fm). For the sake of simplicity, we also confine our-
selves to the case of positive λ [on the contrary, if 
λ€< 0, we should (Italiano et al. 1984; Ammiraju et al. 
1991) put sµν€≡€ηµν – 2hµν]. 

One of the most interesting results is that, at the 
static limit (when only soo ≠ 0 and the strong field be-

comes a scalar field), we get that V€≡€hoo€≡€½ (soo –
 1) = goo – 1 is exactly the Yukawa potential: 

 V g
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with the correct coefficient—within a factor 2—also in 
the exponential (Recami 1982, 1983a; Caldirola, Pavsic 
& Recami 1978). 
Intense field approximation: – Let us consider the 
source-quark as an axially symmetric distribution of 
strong charge g: a study of the metrics in its neighbor-
hood will lead us to consider a Kerr-Newman-deSitter 
(KNdS)-like problem and to look for solutions of the 
type “strong KNdS black holes”. We find that—from the 
“external” point of view—hadrons can be associated 
with the above mentioned “strong black-holes” (SBH), 
which turn out to have radii rS€≈€1 fm. 

For r →€rS, i.e. when the field is very intense, we can 
perform the approximation just “opposite” to the linear 
one, by assuming gµν€≈€sµν. We then obtain equations 
which are essentially identical to the “internal” ones 
[which is good for the matching of the hadron interior 
and exterior!]; hence what we are going to say can also 
be valid for quarks, not only for hadrons. Before going 
further, let us observe that λ can a priori assume a certain 
sign outside a hadron, and the opposite sign inside it. In 
the following we shall confine ourselves to the case 
λ€< 0 for simplicity. 

In general for negative λ we find (Zanchin et al. 
1994) three “strong horizons”, i.e., three values of rS, 
that we shall call r1, r2, r3. If we are interested in hadrons 
which are stable with respect to the strong interactions, 
we have to look for those solutions for which the SBH 
Temperature [ = strong field strength at its surface; see 
e.g. Bekenstein, 1974; Hawking 1975] almost vanishes. 
It is worth noticing that the condition of a vanishing 
field at the SBH surface implies the coincidence of two, 
or more, strong horizons (Zanchin et al. 1994, and refs. 
therein); and that such coincidences imply in their turn 
some “Regge-like” relations among m, λ, N, q and J,  if 
m, q, J are—now—mass, charge and intrinsic angular 
momentum of the considered hadron, respectively. 
More precisely, if we choose a priori the values of q, J, λ 
and N, then our theory yields the mass and radius of the 
corresponding stable hadron. Our theoretical approach 
is, therefore, a rare example of a formalism which can 
yield—at least a priori—the masses of the stable particles 
(and of the quarks themselves). 

Mass Spectra 

We arrived at the point of checking whether and 
how our approach can yield the values of the hadron 
masses and radii: in particular for hadrons that are stable 
with respect to strong interactions; we can guess a priori 
that such values will possess the correct order of magni-
tude. Several calculations have been performed by us, in 
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particular for the meson mass spectra (Ammiraju et al. 
1991, and refs. therein; Recami & Zanchin, 1992; Re-
cami, Zanchin & Vasconselos 1995), although these 
results have yet to be presented in an organized form. 

Here we will quickly outline just some of the results. 
First, let us consider the case of the simultaneous coin-
cidence of all three horizons (r1 = r2 = r3€≡€rh ). We get 
a system of equations that—for example—rules out the 
possibility of intrinsic angular momentum (spin) J and 
electric charge q being simultaneously zero [practically 
ruling out particles with J = 0]; it also implies the in-
teresting relation λ-1 ≅€2rh

2; and finally it admits (real 
and positive) solutions only for low values of J, the up-
per limit of the spin depending on the parameters cho-
sen. 

The values we obtained for the (small) radii and for 
the masses suggest that the “triple coincidences” repre-
sent the case of quarks. The basic formulae for the ex-
plicit calculations are the following (Zanchin et al. 
1994). First of all, we put N = ρ1G, so that g€≡€m. We 
then define, as usual, Q2€≡€Nq2/Kc4; a€≡€J/mc; 
M€≡€Nm/c2, and moreover δ€≅€1 + λa2/3. Then, the 
radii of the stable particles (quarks, in this case) are 
given by the simple equation r = 3M/2δ ; but the masses 
are given by the solution of a system of two Regge-like 
relations: 9M2 = –2δ3/λ; 9M2 = 8δ(a2 + Q2). 

The cases of “double coincidence”, i.e. of the coinci-
dence of two (out of three) horizons only, seem to be 
able to describe stable baryons and mesons. The funda-
mental formulae become, however, more complex 
(Zanchin et al. 1994). We define η€≡€a2 + Q2; 
σ€≡€δ2 + 4λη; and Z€≡€3δ2 – 4λδη + 18λM2. The 
stable hadron radii are then given by the relation 
r€≡€3Mσ/Z; while the masses are given by the non 
simple equation 9M2σ(δσ – Z) + 2ηZ2 = 0, which 
relates M to a, Q and λ. Of course, some simplifications 
are met in particular cases. For example, when λ€= 0, 
we get the Regge-like relation: 
 M2 = a2 + Q2, (14) 
which—when q is negligible—becomes M2 = cJ/G, that 
is [with c = G = 1]: 
 m2 = J . (14’) 
On the other hand, when J = 0, and q is still negligible, 
we obtain [always with c = G = 1]: 
 9m2 = –λ-1. (15) 

Also in the cases of “triple coincidence” simple ex-
pressions are found, when |λa2| << 1. Under such a 
condition, we find the simple system of two equations: 
 9M2 ≈€8(a2 + Q2);     9m2 ≈€–2λ-1, (16) 
where the second relation is written with c = G = 1. 

All the “geometric” evaluations in this section are 
referred—as we have seen—only to stable hadrons (i.e., 
to hadrons corresponding to SBHs with “temperature” 
T ≈€0), because we do not know of general rules associ-
ating a temperature T with the many experimentally 
discovered resonances [which will correspond (Caldirola, 

Pavsic & Recami 1978; Recami 1983a, 1982; Recami & 
Zanchin 1986) to temperatures of the order of 1012 K, if 
they have to “evaporate” in times of the order of 10–

23 s)]. Calculations suited to comparing our theoretical 
approach with experimental mass spectra (for mesons, 
for example) have, therefore, been performed up to now 
by taking recourse to the trick of inserting our inter-
quark potential Veff, found above, into a Schroedinger 
equation. Also many calculations—kindly performed 
by our colleagues Prof. J.A. Roversi and Dr. L.A. Brasca-
Annes of the “Gleb Wataghin” Physics Institute of the 
State University at Campinas (S.P., Brazil)—have not 
yet been reordered! Here we can specify, nevertheless, 
that potential (8’) has been inserted into the Schroed-
inger equation in spherical (polar) coordinates, which 
has been solved by a finite difference method (Am-
miraju et al. 1991). 

In the case of “Charmonium” and of “Bottomo-
nium”, for example, the results obtained [by adopting 
(Quigg 1985) for the quark masses the values 
m(charm) = 1.69 GeV/c2; m(bottom) = 5.25 GeV/c2] 
are the following (Figure 2). For the states 1 – 3s1,  2 – 3s1 
and 3 – 3s1 of Charmonium, we obtained the energy 
levels 3.24, 3.68 and 4.13 GeV, respectively. Instead, for 
the corresponding quantum states of Bottomonium, we 
obtained the energy levels 9.48, 9.86 and 10.14 GeV, 
respectively. The radii for the two fundamental states 
turned out to be r(c) = 0.42 fm, and r(b) = 0.35 fm, 
with r(c) > r(b) [as expected from “asymptotic free-
dom”]. Moreover, the values of the parameters obtained 
by our computer fit are actually those expected: ρ = 1041 
and ρ1 = 1038 (just the “standard” ones) for Charmo-
nium; and ρ = 0.5€×€1041 and ρ1 = 0.5€×€1038 for 
Bottomonium. 

The correspondence between theoretical and ex-
perimental results (Quigg 1985) is satisfactory, espe-
cially if we bear in mind the approximations adopted (in 
particular, treating the second quark g” as a test-
particle). 
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Corrigenda 
Volume 3, No. 3-4: 
Page 126, col. 2, line 27 from bottom, 
after “We have”, insert: 

(Fig. 1) 
Page 126, col. 2, line 16 from bottom, the 
second equation should read: 
 v' = vc/(c±v) 
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Fig. 1 (Walton; from p. 33) 
( O' )  
_____________________________________ 
 ( O ) 
____________________________________  
Fig. 2 (Walton; from p. 33) 
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 ( ( O ) 
____________________________________  
Fig. 3 (Walton; from p. 33) 

 


