
 APEIRON Vol. 3 Nr.3-4 July-Oct. 1996 Page 117 

T h e   E p h e m e r i s 
Focus and books    

Problems of Quantum Mechanics 

A recent Special Issue on fundamental problems of quantum 
physics (Barut et al. 1995) confirmed widespread recognition of 
the persistent difficulties of quantum measurement theory and its 
canonical “Copenhagen interpretation.” The measurement theory 
problems were faced with ingenuity, fortitude, and a shared hope 
for “hidden variables.” What they were not faced with in respect 
to the latter was consensus. 

That being the case, there remains room for consideration of 
still other approaches to hidden variables than those favored by 
the particular authorities chosen. I shall confine attention here to 
my own penchant on this subject, which will be summarized in 
the same spirit of “science criticism” as my previous essay 
(Phipps 1995), in which I touted the advantages of a Galilean 
invariant covering theory of Maxwell-Einstein electromagnetism 
first propounded by Hertz (1892). 

As a persistent advocate of covering theories (Phipps 1987), I 
was struck by the scarcity in Barut et al. not only of these but of 
specific challenges to the perfection of the “accepted” mathemati-
cal formulation of ordinary non-relativistic quantum theory. It 
seems to be a widely-established premise that because Copenha-
gen has brought the subject to a dead end philosophically it must 
also be at a dead end mathematically and formally. Such is far 
from being the case. Indeed, if the topic is approached with a 
modicum of disenchantment, one notices a startling discrepancy 
(an “incompleteness,” to be sure) in the area of parametrization: 

There is a well-known outward resemblance, termed a “formal 
Correspondence,” between the classical Hamilton-Jacobi equa-
tions and the Schroedinger equation. Remarkable as this Corre-
spondence may be, its breakdown is even more remarkable, and 
the failure of physicists in general to take notice of that break-
down is the most remarkable of all these prodigies. By “break-
down” I mean the fact that half the classical descriptive parame-
ters are missing from the quantum equations of motion. That is, 
in order to treat the interactions of point particles, Hamilton-
Jacobi mechanics provides a canonical formalism, contrived to 
effect a transition from description in terms of a set of n “old 
canonical variables” to description in terms of a set of n “new 
canonical variables.” Typically, the latter are chosen to be a set 
(Qk ,Pk) of constants of the motion, whereas the former are identi-
fied with the ordinary dynamical variables (qk ,pk). 

Both sets, 2n parameters in all (omitting time t), are needed for 
the description of specific physical events on the classical side—
there being an essential relationship of formal symmetry between 
the two sets. Yet, if we believe the Schroedinger equation, only n 
descriptive parameters (formal analogues of the old canonical 
variables) have a role to play on the quantum side. The other n 
have simply gone fishing, taking their symmetry with them—the 
whole idea of a canonical formalism being thus summarily dis-
carded. This is surely a curious occurrence, and one possibly 
deserving of more attention than it has received. With n missing 
constants thus identified, the search for hidden “variables” in 
quantum mechanics takes a new direction. 

In passing from description of the large and crude to that of the 
small and delicate, how can there be a change in number of de-
scriptive parameters? We are solemnly assured that a formal 
Correspondence exists, and Pauli (1933), for one, has made a 
great show of tracing it in ostensible rigor. The Correspondence is 
supposed to hold seamlessly over a continuously variable range 
of physical conditions. Yet a number, an integer, is ... well, dis-
continuous, is it not? How, then, did a jump in the head-count of 
parameters by even one integer occur? Yet, somehow, n of our 
parameters, half of our 2n Hamilton-Jacobi descriptors, have 
quietly disappeared in this process—have jumped straight into 
limbo. A critic feels obliged to inquire: How rigorous can the 
“formal Correspondence” be that drops any parameters at all? 

And how about that formal parametric symmetry that lies at 
the heart of canonical transformation theory? At precisely what 
stage of a physical-descriptive transition from large to small did it 
decide to fold its tent? And at what stage of the retro-transition 
from small to large did the prodigal return? Why is the air not 
vibrant with the complaints of important theoretical physicists 
super-sensitized to symmetry through being saturated to their 
eyebrows with symmetry-based group theory? The core symme-
try of classical physics has been ... raped? … murdered? ... held 
for ransom? ... yet we hear not a squeak out of any of these 
wheels. Bizarre! Bizarre! The sociology of physics appears every 
bit as fascinating as the discipline itself. 

For such reasons there is no cause for a rational being to take 
aesthetic pleasure or satisfaction in the current formalism under-
lying quantum physics. To venerate it as unalterable for all time is 
intellectually indefensible. The reasons advanced against “ac-
cepted” quantum mechanics from Einstein on have been primarily 
physical or philosophical. Am I the first to object (Phipps 1987) 
on purely aesthetic grounds? Though there is much talk about the 
need to inject hidden parameters, one observes no rush of physi-
cists to correct their subject’s glaring parametric deficiency 
through the obvious method of rigorizing the formal Correspon-
dence. Yet that is manifestly what needs to be done, at highest 
priority, surely before anything else is tried. If that fails, it will be 
time for hidden-variable hunters to broaden their search. 

When this rigorizing is carried out (necessarily in a fairly 
unique way, since the Hamilton-Jacobi equations, except for 
trivial variants, have a well-defined form), one finds (Phipps 
1960, 1979, 1987, 1988) that formal analogues of the new canoni-
cal variables have no choice but to persist within the quantum 
(operator or q-number) equations of motion. They do not play 
hooky in order to go fishing, nor allow themselves to be kid-
napped, raped, or murdered, because the hickory stick of strict 
form preservation denies them opportunity for such extracurricu-
lar activities. But, as we shall see, these extra parameters persist 
within the quantum formalism in a latent or comparatively “harm-
less” form. That is, the new c-number parameters (Qk ,Pk) (which 
remain constants on both sides of the Correspondence transition) 
turn out to enter quantum theory through an indeterminate (con-
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stant) phase factor on the wave function—a phase factor that 
plays somewhat the same role as does the “gauge” in electromag-
netism. The proof of this fact has been given repeatedly (Phipps 
1960, 1979, 1987, 1988), but is so short and simple that it can 
easily be summarized here: 

Let us write the Hamilton-Jacobi equations (Goldstein 1950) 
for m particles: 

 H
t

S= −
∂
∂

     H H q p tk k= , ,c h  (1a) 

 p
q

Sk

k

=
∂

∂
     S S q Q tk k= , ,c h  (1b) 

 − =P
Q

Sk
k

∂
∂

     k m= 1 2 3, , ,… . (1c) 

This shows the formal symmetry of (qk ,pk) and (Qk ,–Pk) on 
the classical side of the Correspondence transition. We propose 
to found that transition on form preservation, by reinterpreting 
all these c-number symbols, without the slightest alteration of 
their formal relationships, as operators (q-numbers). This means 
supplying a formal operand Ψf = Ψf (qk ,Qk ,Pk ,t), which can be 
the same on both sides of all of these simultaneous equations. 
Thus 
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wherein the partial differential operators are understood to act 
upon everything to their right. Eq. (2) can now be postulated to 
hold for all mechanics, on both sides of, and throughout, the 
Correspondence transition. This is the case because we readily 
discover three distinct classes of exact mathematical solution of 
these simultaneous partial differential equations, each of which 
correlates with the physics on one side or the other of this transi-
tion. Thus: 

Class I. Ψf = const. Since the operand in this case cancels trivi-
ally from the postulated equations of motion (2), we are left, as 
the most elementary class of exact solutions, with the Hamilton-
Jacobi equations (1) describing classical mechanics. 

Class II. S = const. = h/i. This class of solutions of (2) de-

scribes ordinary quantum states of motion; i.e., atomic physics. 
This is the case because (2) reduces to 
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If we make the substitution 
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then (3a,b), from which the constant phase factor has been can-
celed, will be recognized as the Schroedinger-Dirac equations, 
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and Eq. (3c) will be observed to be identically obeyed by the 
formal solution (4). Hence the Class-II solutions of (2) recapture 
established quantum mechanics, apart from a constant phase-

factor e x p −iαa f , α = − ∑h 1 Q Pk k
k

, attached to the quantum wave 

function, Eq. (4). This phase factor affects nothing directly ob-
servable, since it is simply a constant that can be absorbed into 
the wave-function normalization factor. In this, as we remarked, it 
resembles an electromagnetic “gauge.” 

Class III. S ≠ const., Ψf ≠ const. This most general class of 
solutions requires concomitant solution of all three parts of Eq. 
(2), wherein S and Ψf are treated as simultaneous unknowns. An 
example of such a solution has been given (Phipps 1960, 1987), 
based on a Dirac-type Hamiltonian. This solution exhibits bound 
states of electron-positrons on the scale of nuclear dimensions. 
Those stationary states lie within the Pauli Zwischengebiet (re-
gion of total particle energy between ±moc

2), and are conse-
quently characterized by real mass-energy but imaginary momen-
tum. Transitions of particles occupying such states to or from 
observable states of real momentum are presumably what physi-
cists refer to as nuclear “beta processes.” The reason such light 
particles can exist stably in nuclear confinement is that the 
Heisenberg postulate is violated locally near a massive center of 
Coulombic force. This can be seen from the fact that the Heisen-
berg postulate is generalized to  
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as follows directly from (2b). The Heisenberg postulate corre-
sponds to the special case S = h/i, viz., that of the Class-II solu-

tions. But in the Class-III solutions the value of the p,q commuta-
tor S can be a more general (non-constant) function of distance 
from a force center. 

Such generality introduces a technical question concerning the 
Hermitean property of operators. Let S = (h/i)s, where 

s = (qk ,Qk ,t) is some real scalar function. Then we see that the 
classical-analogue operators for energy and momentum in (2) 

become non-Hermitean. For example, p sk i q k= hc hc h∂ ∂  is seen 

to be the product of two Hermitean operators, which is known to 
be non-Hermitean. 

Fortunately, the simple but vital “reification” transformations 

 H = −Hs 1 ,    P k kp s= −1 ,  Ψ Ψ= s f , (7) 

yield a reversion to the familiar Hermitean formalism, 

H Ψ Ψ= − h i tc hc h∂ ∂ , P k = h i q kc hc h∂ ∂ , etc., where for known 

classical-analogue operators the transformed operators H  and 
P k  are in all cases found to be Hermitean. Thus the only effect of 

this “generalization of quantum mechanics” (amounting to a new 
identification of the time-conjugate energy operator) is to alter the 
effective energy and momentum operators that are to be used in 
physical problems. For instance, in a non-relativistic one-body 
problem the effective Hamiltonian becomes 
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which is seen to be Hermitean, since s is real. Our generalization 
of quantum mechanics thus fails to interest mathematicians; but it 
should interest physicists because of the altered Hamiltonian. (It 
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is true on both sides of the Correspondence transition that the 
physics is in the Hamiltonian.) 

It is tempting to go on about the quite fascinating nuclear-
bound-state solutions generated by a relativistic Dirac-type Ham-
iltonian; but these matters have been treated elsewhere (Phipps 
1987), and I wish to keep this critique primarily on the plane of 
aesthetics. Returning to the Class-II solutions: 

There is clearly no recovery of determinacy, because the phase 
factor on the wave function affords no predictive nor localizing 
information not present in the traditional quantum description. In 
the world described by accepted quantum theory, however, the 
capacity is lost not only for prediction but, more seriously, for 
retrodiction. The latter loss proves catastrophic, since it contra-
dicts our belief in the definiteness of factual history. That belief is 
grounded in every iota of human experience. It is not acceptable 
that physical theory directly flout experience—such theory being 
granted no higher charter than to describe or explain experience. 
The presently suggested approach completely corrects this most 
basic flaw of current quantum measurement theory: That is, it 
restores objectivity to physical description through provision of 
parameters essential to retrodiction. In short, we now have the 
parameters necessary to allow after-the-fact description (via c-
numbers) of physical point events. 

Even though the values we may assign to such retrodictive pa-
rameters (the Qk ,Pk ) are not observationally verifiable (given the 
concept of “verifiability” as associated narrowly with prediction, 
rather than retrodiction), we can assert an epistemological gain, in 
that now it is permissible to suppose that something actually 
happened. History becomes irrevocably “real,” in that it differs 
from the future by the localized definiteness associated with c-
number describability. The future still and always lacks such 
definiteness, so there arises a formal dichotomy between past and 
future, reflecting the dichotomy of actual experience. 

In ordinary quantum physics there is no such distinction be-
tween past and future, hence no objectivity ascribable to physical 
experience. This, I claim, is a far worse malady than indetermi-
nacy of trajectories, since quantum-level trajectories (linking 
observable events) are pure inferences—impositions of the human 
mind, conditioned by the gross-scale experiences through which it 
has evolved. By contrast, point events (localized “happenings”), 
representing quantum process completions, once they join the 
fabric of accomplished fact known as the past, are at least roughly 
describable (as to location in space and time) by c-number pa-
rameters—which our formalism now contains ... and which ordi-
nary quantum mechanics conspicuously lacks. 

Such description implies a discontinuous “jump” of the erst-
while constant parameters in the wave function phase factor, 
symbolized by the quantity α  introduced following Eq. (5), 
above. This jump of the α -value destroys any “phase knowl-
edge” connecting “before” and “after.” In the early days of quan-
tum theory this was referred to as a “quantum jump” or “sever-
ance of the von Neumann chain” of phase connections. We now 
have an explicit parametric mechanism to accomplish such sever-
ance. The scheme works perfectly well, even though we can 
assign neither observational meaning nor verifiability to specific 
numerical values of αbefore  and αafter . All we need is the fact of an 
unknown (and unknowable) jump or discontinuity, ∆α , accom-
panying any quantum process completion, which “ends the quan-
tum descriptive problem” by irreversibly disconnecting quantum 

system phases before and after ... and sets the stage for the next 
descriptive problem. 

The jump can take place only after the physical event occurs 
that is being described. The “event” is the raw material of experi-
ence. It occurs uncontrollably and independently of human voli-
tion. In descriptive parlance the jump acts directly on, or “re-
duces,” the system wave function itself (not the “wave packet”). 
After this action we face a new descriptive problem, often involv-
ing new “particle” participants and a new Hamiltonian. The phase 
jump affects only retrodiction and has no predictive scope. What-
ever physical happening it reflects occurs “out there”—as a part 
of objective reality. It takes place independently of “mind,” which 
has no enabling role. Objectivity is thus restored to physics, but 
without any accompanying rehabilitation of quantum-level deter-
minism. 

In this way the equations of motion, (2), through their extra 
parametrization, do the “problem resetting” job of a Projection 
Postulate, but without ad hoc postulation ... to the notable bene-
fit of logical economy. (In classical mechanics equations of motion 
suffice for physical description without supplementary postula-
tion. Where there is rigor of formal Correspondence, this logical 
sufficiency should persist throughout the full range of descrip-
tion. A Correspondence-based theory must thus obey a rule of 
austerity, being denied resort to postulation-of-convenience.) The 
world is therefore no longer one big phase-connected, interminable 
“quantum problem.” Thus, improvement of logical economy is 
one of the principal selling-points for the present covering theory. 

The irreversibility of the phase-connection severance just de-
scribed seems, in information theoretical terms, suited through 
“phase-knowledge loss” to distinguish between a factually deter-
mined past and an undetermined or unknowable future. The 
severance takes place at the most basic quantal level and marks 
the “completion” of each individual physical process. It seems 
thus a prime candidate for the elusive element of mechanical 
irreversibility that may reasonably be suspected to underpin 
process irreversibility, time-flow irreversibility, and the second 
law of thermodynamics. 

Is it pure accident that a rigorization of formal Correspondence 
brings logical economies to measurement theory and a formal 
unification to all mechanics? Or is there some principle, from 
whose implementation these benefits might reasonably be ex-
pected to follow? Physicists have learned from Einstein that 
associated with any form preservation is a relativity principle. 
The formal Correspondence on which Schroedinger’s (wave) 
mechanics is based is certainly, by definition, a form preserva-
tion—although until now an imperfect one. All we have done here 
is to perfect that form preservation by rigorizing it. Einstein’s 
lesson, then, is: cherchez la relativity principle. So, what relativity 
relates? 

To belabor the obvious, we appear to be concerned with a 
principle of relativity of physical size. For, what are we doing 
physically in extending the Hamilton-Jacobi formalism beyond its 
range of proven validity? We are pushing that descriptive formal-
ism into the realm of very small physical systems, first at the 
atomic scale, then down to the nuclear and below. If we had taken 
such a relativity principle as our starting point, we could have 
deduced the Correspondence principle from it and could have 
proceeded deductively with all the developments indicated above. 
In fact, this was more or less the order of procedure adopted in 
(Phipps 1987). 
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In theoretical physics as a social enterprise, such an approach 
has been stymied historically; notably because Dirac (1947) chose 
to picture quantum mechanics as the discipline that sets an abso-
lute size scale to the world. (“So long as big and small are merely 
relative concepts, it is no help to explain the big in terms of the 
small. It is therefore necessary to modify classical ideas in such a 
way as to give an absolute meaning to size.”) One cannot talk size 
relativity in the presence of convictions like that one, nor is one 
encouraged to look beyond the atomic realm toward a new  trans-
quantum dynamics  of the nuclear realm. So, fruitful as it might 
prove to be for future physical description, and elegant as it may 
be on the plane of aesthetics, a principle of size relativity is 
clearly assured of weighty opposition from entrenched ways of 
thought. 

Perhaps the dominant consideration to be emphasized here is 
that we have met an example of a true covering theory of ordinary 
quantum mechanics, Eq. (2), which includes that discipline and 
reduces to it in the formal limiting case S i→ h / . At the same 
time the generalized mechanics embodied in (2) is an exact cover-
ing theory of classical Hamilton-Jacobi mechanics. To find a 
single set of equations that thus constitutes a covering theory of 
both classical and ordinary quantum mechanics, two major physi-
cal theories that together account for a range of applications from 
stars to atoms, is a unique occurrence in my experience. 

This alone qualifies Eq. (2) as an aesthetic landmark; but the 
fact that it volunteers coverage also of a third range of physical 
experience through supporting the long-sought possibility of a 
nuclear dynamics (complete with radically simplified explana-
tions of why beta particles emerge from and enter nuclei and the 
vacuum-plenum, why proton and positron charges and spins are 
identical, etc.), incorporated in rigorous formal detail within the 

grand mechanical tradition that bears the paw-mark of the lion, 
Newton, is additional inducement to explore its possibilities. 

String theorists are said to feel the aesthetic attractions of their 
formal mathematical contentions to be so compelling as to tran-
scend all need for empirical support. I confess to being similarly 
overpowered by the beauties of the position adumbrated above 
… though I hope not to the extent of putting theory before facts. 
If a theory meant to be descriptive of facts is more beautiful than 
those facts, it  can hardly be descriptive of them. 
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Seventieth Birthday of a Non-Effect: “Thomas Precession” 

As an undergraduate in the early 60s, I was taught next to 
nothing about “Thomas Rotation” (TR), “Thomas Precession” 
(TP) or “Thomas Effect” (TE). Graduate courses, including gen-
eral relativity with Nathan Rosen (“the EPR one”, as Evert J. 
Post once called him: “Tell me, is your Rosen the EPR one?”) 
didn’t change the situation. Most textbooks and monographs on 
relativity are silent about TP (and the related Ehrenfest para-
dox)—a notable exception being Arzélies’ Relativistic Kinematics. 
Advanced texts either mention, as an oddity, “Thomas’s one half” 
(e.g. Relativistic Quantum Mechanics I by Landau and Lifschitz), 
or simply put it in the historical introduction (e.g. Weinberg’s 
recent The Quantum Theory of Fields). The late Eugen Wigner 
discussed TP in 1939 “in terms of the O(3)-like little group which 
describes rotations in the Lorentz frame in which the particle is at 
rest.” Exploiting the general ignorance of physicists, the mathema-
tician Abraham Ungar has, in recent years, produced a whole 
“thomasian literature”. The mathematical elegance of his presenta-
tion notwithstanding, I stress the plain fact that there never was, 
is or ever will be a physical “Thomas Precession.” 

It was Henri Poincaré who, in June 1905, first wrote the Lor-
entz transformations (LT) in a form which revealed a group struc-

ture in (1+1) dimensions. Einstein also pointed out that the LT 
form a group, “wie dies sein muss” (as it should be—!?); two 
successive transformations with velocities v1, v2 in the same 
direction are equivalent to a LT with a velocity v given by v = 
(v1 + v2)/(1 + µ v1v2), where µ = 1/c2. He briefly mentioned the 
velocity composition law in (3+1) dimensions, but—strangely—
failed to notice that in this case the LT’s do not form a group 
anymore! Twenty years later, Einstein heard something about the 
Lorentz group that greatly surprised him (A. Pais): “It happened 
while he was in Leyden. In October 1925 Uhlenbeck and 
Goudsmit had discovered the occurrence of the alkali doublets... 
then Llewellyn Thomas supplied the missing factor, 2, now 
known as the Thomas factor. Uhlenbeck told me that he did not 
understand a word of Thomas’s work when it first came out... 
Even the cognoscenti of the relativity theory (Einstein included!) 
were quite surprised... (It took Pauli a few weeks before he 
grasped Thomas’s point.)” Citing Pais further: “at the heart of the 
Thomas precession lies the fact that the LT with velocity 

r
v 1  

followed by a second one 
r
v 2  with velocity  in a different direc-

tion does not lead to the same inertial frame as one simple LT 
with velocity (

r r
v v1 2+ ).” Indeed, it has been shown (Moeller, 
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Arzélies) that for 
r r
v v1 =  and 

r r r
v v d v2 = + , the “Thomas angle” 

d dTθ γ= − − ×1 2b g r r
v v v  yields—after division by dt—the 

“Thomas precession” ω θT t≡ d dT , too. The fact of deriving a 

non-inertial “effect” from/via manipulations of LTs relating only 
inertial frames of reference (IFR) relies on the “special” relativis-
tic dogma (not included in the two postulates) that a non-inertial 
frame moving with velocity v(t) and acceleration 

r
a  can at every 

moment be replaced by an IFR moving with uniform velocity 
r
v ! 

The plain fact is that the Thomas precession violates the inertial 
nature of the transported system! The TP is wrong from first 
principles! Furthermore, the prediction that the parallel transport 
of an IFR, (i.e. an extended object) around a circle will produce 
(N.B. torque-free!) a net retrograde rotation ∆θ π γT = − −2 1b g , 

where γ µ≡ −
−

1 2
1

2
vd h  was put to the test in 1974 by Thomas 

Phipps, Jr. The clear null result ∆θT ≡ 0  necessarily implies 

γ ≡ 1 , µ ≡ 0  and Galilean velocity composition: 
r r r
v v v= +1 2 . In 

other words, the “Thomas precession”—a genuine “special” 
relativistic prediction—is absent: there is no Thomas precession 
in this world! One can, if one wishes, celebrate the publication of 
Thomas’s article in 1926, but there is no reason to celebrate the 
birth of a physical effect! 
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