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An appropriate consideration of the relationship between the 
concept of relativistic inertial-mass (rest-mass), and the law of 
four-momentum conservation, leads to a natural two-fold 
partition of the class of all relativistic collision processes into 
those which are, in our own terminology, inertially determined 
processes, and the rest. We find that the ‘inertially determined 
process’ can be given a geometric representation with a formal 
structure which suggests that gravitation might be, in effect, a 
particular case of such a process and therefore a phenomenon 
of inertia. 

Introduction 
An intuitive sense of inertia is, perhaps, one of our most primitive and 
profound perceptions and it is probably no accident that the first of 
our modern theories, Newtonian Mechanics, deals precisely with the 
associated phenomena. Newtonian theory introduces a concept of 
‘inertial frame’, defined as a metaphor for the ‘inertial property’ of 
material particles, and then uses this concept to describe a particle 
property which only manifests itself under dynamic conditions and is 
designated ‘inertial mass’. The introduction of the ‘inertial frame’ 
concept, together with a developing technology, led to the further 
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perception—which some see as also profound and others as 
incidental—that it is apparently possible to define an ‘average frame 
of rest’ relative to the distribution of Universal material and then, 
having done this, to define a class of inertial frames relative to this 
particular rest-frame; in this way, Universal material defines a unique 
class of local inertial frames, Fmat say, and consequently appears to be 
inducing, in some sense, inertial properties in local material. 
Subsequently, the modern discovery of the cosmic background, with 
an associated ‘frame of rest’ and a corresponding unique class of 
locally defined inertial frames, Frad, with the apparent equivalence 
Fmat ≡ Frad, has served to emphasize this point of view. 

A common conclusion derived from these arguments, that 
Universal matter somehow appears to induce local inertial effects, is 
known, in a phrase coined by Einstein, as ‘Mach’s Principle’. We do 
not take any particular position with respect to Mach’s Principle in 
any of its forms but, at one time, such arguments were considered 
sufficiently powerful to justify the opinion that General Relativity—
accepted as the best available theory of gravitation—was only a good 
‘first approximation’, and that a ‘better’ theory, incorporating some 
recognizable interpretation of Mach’s Principle, could be obtained by 
a suitably constructed modification of GR; in this way, various 
additional scalar, vector and tensor fields became attached to 
Einstein’s basic theory of gravitation. However, the discovery of the 
binary-pulsar objects in the 1970’s, which appear to represent sources 
of relatively strong gravitational fields, and the subsequent 
observations on such systems, rapidly led to the formulation of new 
requirements to be imposed on gravitation theories, and these have 
effectively led to the necessary rejection of all additional fields within 
GR proposed as possible means of incorporating inertial effects into 
general gravitation theory. As a consequence of the apparent finality 
of the implications of the binary pulsar observations, the general set of 
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arguments associated with the formulation of Mach’s Principle have 
been effectively marginalized within modern physics, even though the 
only objective conclusion that can be reasonably drawn from these 
observations within this context is that Mach’s Principle itself—
interpreted as some kind of theory for the global induction of 
inertia—and General Relativity will not be easily reconciled. 

Whilst we adopt no particular position with respect to any of the 
various conceptions of Mach’s Principle, we are of the opinion that 
the apparently irreconcilable nature of modern gravitation theory with 
respect to general notions of ‘inertial induction’—represented under 
the collective heading of ‘Mach’s Principle’—really has its roots in 
the conceptual distinction that is made between gravitational and 
inertial mass. Correspondingly, we believe that if this distinction did 
not exist then the phenomenology represented in Mach’s Principle 
would be far more accessible to theoretical understanding than it is at 
present. This general viewpoint has motivated the fairly 
comprehensive appraisal of the distinction, which is given in the 
following sections. 

Inertial-Mass Versus Gravitational-Mass 
The notions of inertial-mass and gravitational-mass are conceptually 
quite distinct, and one of the enduring mysteries of classical and 
modern physics arises from the fact that the value obtained for the 
gravitational-mass ratio of two particles compared in a weighing 
experiment is identical to that obtained for the inertial-mass ratio of 
the same two particles compared in a collision experiment (to within 
experimental error). It is for this reason that we speak of the 
equivalence between inertial and gravitational mass, and tend to use 
the concepts interchangeably. 
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However, when we reflect upon the fact that it is impossible to 
make determinations of gravitational-mass in conditions of free-fall, 
but perfectly possible to make determinations of inertial-mass in these 
same conditions, we begin to realize that the concept of inertial-mass 
must be prior to the concept of gravitational-mass and—by 
implication—that the concept of inertia must be prior to the concept 
of gravitation. For this reason, we focus our efforts on the concept of 
‘inertial-mass’, believing that an appropriate perspective will reveal 
the derivative nature of the ‘gravitational-mass’ concept. 

Our general approach is simple, and consists, in the first instance, 
of a review of Newton’s Third Law which leads us to a statement of 
its dual role in physics: on the one hand, it is primary in providing for 
an operational definition of inertial-mass (when, strictly speaking, it is 
not functioning as a law), whilst on the other it acts as a constraint 
imposed on dynamical variables through a physical process (when it 
is functioning as a law). This distinction is fundamental, and leads us 
to a natural two-fold partition of all Newtonian collision-processes 
into those which are, in our own terminology, inertially determined, 
and those which are not. 

When this simple analysis is generalized to consider the nature of 
the relationship between the concept of relativistic inertial-mass (rest-
mass) and the law of four-momentum conservation, we are led to a 
similar natural partition of relativistic collision-processes into those 
which are inertially determined, and those which are not. 

We subsequently find that the inertially determined relativistic 
collision process can be given a geometric representation with a 
formal structure which suggests that gravitational process might be, in 
effect, a particular case of an inertially determined process. This view 
is confirmed in additional work. The material of this paper is based on 
a much more detailed paper which is to be published, along with the 
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additional work, in a late spring/summer issue of ‘Galilean 
Electrodynamics’, 1991 

General Geometrical Idea Used 
It is within the nature of the quantitative modelling of physical 
processes that mathematical language must be introduced; 
consequently, in order that the general reader can keep in touch 
(hopefully!) with the gist of the basic argument used here, I have 
included this section to explain, in terms of relatively basic 
mathematics, the nature of this argument. 

Imagine two straight lines drawn in ordinary three-dimensional 
space, and suppose that these lines intersect at a single point. In this 
case, it is always possible to position a sphere such that both of these 
lines are tangential to the sphere at their point of intersection; 
basically, the two lines are said to define a plane which is tangential 
to the sphere at the point in question. 

Now imagine that there are three straight lines drawn in the three-
dimensional space which also intersect at a single point. This time, it 
is generally impossible to position a sphere such that all three lines are 
tangential to the sphere at the point of intersection—for this to be 
possible, a condition must be placed on the third line (any line can be 
designated as the third line), and this condition is the third line must 
lie in the plane defined by the other two lines; that is, if three lines, 
which intersect at a single point, all lie in the same plane, then it is 
always possible to position a sphere so that the three lines are all 
tangential to the sphere at the point of their intersection. 

We see that the case of three intersecting lines is different in 
principle from the case of two intersecting lines since, in this latter 
case, it is always possible to position a sphere so that the lines are 
tangential to it at their of intersection, whereas in the former case, a 
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condition—or constraint—must be imposed upon the relative 
disposition of the lines. In mathematical language, it is said that each 
of the lines lies within a three-dimensional coordinate space, but for 
three lines intersecting at a single point to be tangential to a sphere at 
the point of intersection (or any curved surface, in fact), then each one 
of the lines must lie in the two-dimensional sub-space defined by the 
other two (i.e., the plane defined by the other two). 

The relation of the foregoing discussion to the physics of the 
collision process is as follows: for the Newtonian case, the straight 
lines are taken to represent inertial trajectories (forces are absent) and 
the point of intersection is taken to represent a collision event; so, if 
three particles collide, then the trajectory of each particle undergoes a 
change, which can be represented as a velocity change. If we denote 
these three velocity changes as dv1, dv2 and dv3 respectively and note 
that they are 3-vectors (i.e., lines in a three-dimensional velocity-
change space with direction and magnitude) then it turns out that 
inertial mass constrains these three velocity-change vectors to be co-
planar. 

An analogous situation exists when the Newtonian 3-velocities 
and inertial-mass are replaced by the 4-velocities and rest-mass of 
special relativity except, instead of velocity-changes being confined to 
two-dimensional planes in a three-dimensional coordinate space, we 
find that particle-worldlines are confined to three-dimensional 
‘planes’ in four-dimensional coordinate space-time. 

The question arises, ‘where does all this get us?’ and we answer as 
follows: basically, the physics of rest-mass (i.e., relativistic inertial-
mass) tells us that the particle-worldlines into and out-of any collision 
(the arcane details inform us that we can only consider four or less 
colliding particles in the special relativistic case, and three or less in 
the Newtonian case) are confined to a particular surface defined 
within the coordinate-space; this then raises the possibility that the 
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geometry of such surfaces can be used to categorize collision 
processes, and this is the possibility pursued within this article. 

Finally, before diving into the arcania, let me defuse a potential 
source of confusion for the non-specialist. We speak of scalar-
functions and of level-surfaces to scalar-functions, and we can 
illustrate the distinction as follows: an example of a scalar-function is 
given by the square of the Euclidean distance of a point (x,y,z) from 
some fixed origin, f(x,y,z) ≡ x2+y2+z2. An example of a level-surface 
to this scalar-function is given by the sphere of radius 2, centre the 
origin, i.e., f(x,y,z) ≡ x2+y2+z2 = 4. So, a scalar-function f(x,y,z) is 
simply an object which has a numerical value for any chosen values 
of (x,y,z) whereas the level-surface f(x,y,z)=k, for some fixed value k, 
is the set of all those coordinates (x,y,z) for which f(x,y,z) has the 
specific value k. In terms of this language, we say, typically, that rest-
mass constrains four-velocities to lie ‘in a three-dimensional invariant 
sub-space (i.e., a plane) of coordinate space ... and that such a sub-
space is tangent to a level-surface of some scalar-function defined 
everywhere on the coordinate space. These latter words could have 
been used to describe three ordinary lines being confined to an 
ordinary plane, and noting that such a plane can always be considered 
as tangential to a sphere (sphere = level-surface of the scalar-function 
f(x,y,z) ≡ x2+y2+z2). 

The Newtonian Inertial-Collision 
This section is included, not to say anything new about the Newtonian 
collision, but to illustrate more explicitly the nature of the arguments 
to be used in the relativistic case. 

Consider a closed system of N material particles having respective 
velocities v1..vN at time t, and v1+dv1..vN+dvN at time t+dt measured 
from within some inertial frame, and suppose that these particles have 
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pre-determined masses given by m1..mN. Then Newton’s Third Law, 
expressed in momentum-conservation form, can be expressed as 

 
1

0
N

r
r

r

m dv
=

=∑  (1) 

In this form, and with the given interpretation of the m1..mN, it 
represents a general constraint imposed on dynamical variables 
through a physical process. 

However, suppose, for the sake of argument, we do not possess 
any concept of mass so that the coefficients m1..mN are uninterpreted, 
but that we do know values of these coefficients can always be found 
such that (1) is true for any measured set of velocity changes. What 
can be deduced about the physics of the Newtonian collision process 
on the basis of this knowledge alone? The answer to this question 
varies according to N > 3 or N ≤ 3. 

Since classical velocity is a three-vector then, in the absence of any 
other information, it is a matter of basic linear algebra that for N > 3, 
and for any measured set of velocity-change vectors, dvr, r = 1..N, it is 
always possible to determine a non-unique set of coefficient ratios mT 
≡ (1,m2/m1 .. mN/m1) satisfying (1). In other words, (1) is trivially true 
for this case, and carries no physical significance. 

However, if N ≤ 3, the situation is quite different: in this case, it is 
a matter of basic linear algebra that (1) can only be true if the 
velocity-change vectors are constrained to be linearly dependent. This 
is a strong statement about a physical process which can be 
experimentally tested and it is found that the observed velocity 
changes in N ≤ 3 collision experiments do appear constrained in 
precisely the way predicted and where, of course, the coefficient 
ratios, m—which can be uniquely determined in any such experiment 
and are found to be independent of the initial velocities, vr, r =1..N—
are designated as the ‘inertial-masses’. 
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The foregoing analysis serves to remind us of the duality inherent 
in the relationship (1): 
• It is primary in providing for an operational definition of inertial-

mass, but can only do this for cases N ≤ 4. 
• In cases for which particle masses have an assumed prior 

determination, it operates as a general constraint (conservation 
of linear-momentum) on the collision process, but can only be 
considered non-trivially true when either the masses have been 
gravitationally pre-determined, in which case it is a non-trivial 
statement for all N, or when the masses have been inertially pre-
determined, in which case it is a non-trivial statement only for 
N > 3. 

This simple analysis reminds us that the N ≤ 4 collisions are uniquely 
those in which the property of inertial-mass explicitly manifests itself 
as a fundamental physical property. For this reason, we distinguish 
such collisions from all others, and refer to them as inertially 
determined Newtonian collisions. 

This analysis of the Newtonian case prepares us for a similar 
analysis of the relativistic case, given in the following sections. 

The Relativistic Inertial-collision 

In the case of a relativistic collision, it is no longer possible to 
suppose that any given particle into a collision can be identified with 
some particle out of the collision and the analysis of the Newtonian 
collision must be generalized in the following way. Consider an 
arbitrarily defined collision event, e, involving a total of N particles; 
consequently, if there are n particles into e, having respective four-
velocities Vr, r = 1..n, then there will be N – n particles out of e, 
having respective four-velocities Vr, r = n + 1..N. Now suppose that 
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the particles have pre-determined rest-masses given by m1..mN 
respectively then, if four-momentum is to be conserved, we have 

 
1 1

0
N n

r r
r r

r n r

m V m V
= + =

− =∑ ∑  (2) 

In this form, and with the given interpretation of the m1..mN, it 
represents a general constraint imposed on a particular physical 
process. 

However, suppose, for the sake of argument, we do not possess 
any concept of rest-mass so that the coefficients m1..mN are 
uninterpreted, but that we do know values of these coefficients can 
always be found such that (2) is true for any measured set of four-
velocities. What can be deduced about the physics of the relativistic 
collision process on the basis of this knowledge alone? 

The answer to this question varies according to N > 4 or N ≤ 4, and 
we easily conclude, using arguments which exactly parallel those of 
the Newtonian analysis, that, if N > 4, then (2) is without physical 
significance in this case. By contrast, if N ≤ 4, the asserted truth of (2) 
for this case amounts to the statement that the four-velocities are 
constrained to be linearly dependent. This is a strong statement about 
a physical process which, as with the Newtonian case, can be 
experimentally tested and, upon testing, appears to be verified. 

Furthermore, when such experiments are repeated using similar 
incoming particles for all trials, but with varied incoming four-
velocities, it is found that the coefficient ratios (1,m2/m1,m3/m1,m4/m1) 
are identical (to within expected errors) over all trials. These 
coefficient ratios are, of course, defined as the rest-masses of the 
particles concerned. 

The foregoing analysis serves to remind us of the duality inherent 
in the relationship (2) which parallels that inherent to (1): 
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• It is primary in providing for an operational definition of rest-
mass (relativistic inertial-mass), but can only do this for cases 
N ≤ 4; 

• In cases for which the rest-masses have an assumed prior 
determination, it operates as a general constraint (conservation 
of four-momentum) on the collision process, but can only be 
non-trivially true for the cases N > 4.  

This simple analysis reminds us that the N ≤ 4 collisions are 
uniquely those in which the property of relativistic inertial-mass 
explicitly manifests itself as a fundamental physical property. For this 
reason, we distinguish such collisions from all others, and refer to 
them simply as inertially determined collisions. 

Geometry and the Inertially Determined 
Collision 
We have seen that the property of relativistic inertial-mass is uniquely 
identified with the particular class of collisions categorized as 
‘inertially determined relativistic collisions’. In the following, we 
shall show that any such collision can be given a covariant geometric 
representation so that, effectively, relativistic inertial-mass becomes 
geometrized in the same way. It is this representation which, 
ultimately, provides the link between inertial and gravitational 
processes and identifies gravitational process as a particular case of 
inertial process. 

Since, in any inertially determined relativistic collision, N ≤ 4, 
then, according to (2), the trajectories, represented by the four-
velocities V1 ... VN, of the (up to) 4 particles involved in any such 
collision must lie in some relativistically invariant timelike connected 
3-dimensional subspace of the coordinate space. Any such subspace 
can, in turn, be considered to define a tangent-plane to a spacelike 
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level-surface of some scalar function, U say, and the concept of a 
geometry on such a level-surface is implicit in the concept of U as an 
invariant scalar function; consequently, since the trajectories of 
massive particles are constrained to tangent-planes of such level-
surfaces through arbitrary collisions, then we are led to the possibility 
of a geometric description of the changes between inertial trajectories 
which occur during inertially determined collision processes. 

To derive this collision-geometry representation of the inertially 
determined collision, we first note that, since a ay U≡ ∇  defines 
normal-vectors to the level-surfaces of U, then 
 ab a bg U≡ ∇ ∇  (3) 

defines the covariant rate of change of any such normal-vector in the 
region of its point of application. If this rate of change is integrated 
along a path which lies within any given level-surface of U and 
between any two given points, then the result will describe the total 
variation in the orientation of the level-surface between the two 
points; consequently, gab—used in this way—provides a complete 
prescription of the geometrical properties of level-surfaces in U. 
However, the integrated result will also describe the total variation in 
the magnitude of the normal-vector, and this naturally leads us to 
enquire if purely geometric considerations are sufficient for the 
purpose of describing changes between inertial trajectories during 
inertially determined collision processes—in which case, we must 
replace the normal-vector by the unit normal-vector—or if it is 
necessary to include the magnitude information which is implicit to 
gab defined at (5). 

We can answer this question, and gain a further insight into the 
foregoing considerations, by considering the most simple non-trivial 
case of N = 2 which corresponds to one particle entering an event, and 
an identical particle exiting the event, where the ‘event’ is an 
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arbitrarily chosen point on the trajectory of a non-interacting inertial 
particle; the simplest solution of (5) corresponding to this case is 
given by 

 ( ) ( )0U x x x≡ Φ −  

where 

 ( )( )1
2

i i j j
o o ijx x x x γΦ ≡ − −  (4) 

 
2

ab ab a bg
x x
∂

γ
∂ ∂

Φ
≡ =  

for some arbitrarily chosen origin 0
ax . 

To understand the significance of the spacelike level-surfaces 
Φ = λ < 0, we first note that 

 ( )0
j i

a ajay x x
x

∂
γ

∂
Φ

≡ = −  (5) 

defines the normal-vector to the surface Φ = λ at any point xa, and so 
any inertial trajectory which is orthogonal to ya and passes through xa 
lies in the tangent-plane to the surface at this point. Consequently, the 
surface itself can be considered as a representation of all those inertial 
trajectories which potentially pass through xa, and which are 
orthogonal to ya. In this way, an infinite sub-class of all possible 
inertial trajectories is made into a single equivalence class, and each 
distinct level-surface of Φ will then correspond to a similar, but 
likewise distinct, equivalence class. Furthermore, the arbitrary choice 
of origin, 0

ax , allows the direction of the normal-vector, ya, to be 
varied arbitrarily so that Φ-functions can be found with level-surfaces 
which accommodate all possible inertial trajectories. In this way, 
finally, all possible inertial trajectories can be reduced to a set of 
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equivalence classes, ℑ(λ, x0), where x0 defines the origin for a 
particular Φ-function, and λ defines a particular level-surface for this 
function. 

If we now calculate the magnitude of the normal-vector y, defined 

at (5), on the level-surface Φ = λ <0, we find ij
i jy y y γ λ= = , so 

that any change in the magnitude of the normal-vector on a level-
surface of U reflects a change between inertial trajectories which 
belong in distinct equivalence classes, ℑ(λ, x0). It follows that if we 
restrict our attentions to purely geometric considerations—so that 
only variations in the unit normal-vector are considered—then we 
exclude the possibility of the most general kinds of change between 
inertial trajectories during inertially determined collision processes. 
Since there is no reason a-priori to restrict inertially determined 
collisions in this way, we retain magnitude information, and use gab 
given at (3) as a definition of the geometry on the locally defined 
collision-manifold which provides a geometric description of the 
general inertially determined collision process. 

The collision-manifold associated with gab is, of course, not yet 
sufficiently specified since we have not considered the nature of the 
connections on it. A determination of these requires a discussion of 
the most general cases of N= 3,4. Consider two distinct points P1 and 
P2 separated by a timelike interval, and let us consider the nature of 
the geodesics which might connect them in any circumstance; in the 
simplest case of N=2 they can only be connected by a conventionally 
defined geodesic in an inertial space-time and this remains a 
possibility in the more general cases of N = 3,4. However, in these 
latter cases it is also possible to locate the non-trivial inertially 
determined collision event between P1 and P2 such that these two 
points can be connected by a ‘dog’s leg’ trajectory passing through 
the event; consequently, geodesics on the collision-manifold defined 
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by (3) for the N = 3,4 cases exist as the union of piecewise inertial 
segments which are connected at non-trivial inertially determined 
collision events. It is quite clear that such geodesics can only arise on 
collision-manifolds which are non-trivially connected so that (3) can 
be more explicitly presented as 

 
2

k
ab aba b k

U U
g

x x x
∂ ∂

∂ ∂ ∂
= − Γ  (6) 

where c
abΓ  are the non-trivial connection coefficients. Since the 

geodesics in this system are inertial between branching events, then 
the system is everywhere locally flat—except at some countable set 
of branch points—which implies that the Ricci condition, gab;c = 0, is 
satisfied everywhere except possibly at this countable set. If we 
ignore these excluded points—a step which must ultimately be 
justified—this implies that the connection coefficients must be the 
Christoffel symbols, and we tentatively accept this to be the case. 

Finally, because (6) is expressed in terms of a language normally 
associated with the concepts of curved spacetime manifolds used in 
conventional metric theories of gravitation, it is re-assuring to know it 
can be shown that the manifold described by (6) specified with the 
Christoffel symbols can only admit solutions which are either 
globally flat (the trivial collision-manifold which contains no 
collisions) or are not everywhere locally flat (local non-flatness 
occurring at inertially determined collision events). 

Gravitation 1. Definite Conclusions 
The significance of the collision-manifold geometry to gravitational 
effects appears in the following way: 

The notion of a non-interacting inertial particle, potentially 
realizable at an arbitrarily defined place, is formally equivalent to the 
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notion of the class of globally defined scalar fields defined at (4). It 
turns out that a spherically symmetric disturbance of any member of 
this class, which is constrained to satisfy the general collision 
manifold geometry defined at (6), necessarily generates a particular 
class of spherically symmetric advanced or retarded potentials. If we 
restrict our attention to the retarded potentials, it can be shown that the 
passage of any such potential through any test-particle causes the test-
particle to register a disturbed infinitesimal proper-time which, 
effectively, means that the retarded potential has transferred 
momentum to the test-particle. 

We conclude that the disturbing source and the test-particle have 
undergone an inertial “at-a-distance” interaction which is arbitrated 
by a retarded potential and that, effectively, this retarded potential acts 
exactly as we might expect a “gravitational wave” to act, if such a 
thing existed. 

This view of the retarded inertially-determined potential, as the 
generator of gravitational effects, is confirmed when we find that it 
has a multipole representation in which the effect of the monopole 
component on the infinitesimal proper-time of any test-particle can be 
made identical (at O(1/R3)) to the corresponding effect described by 
the Eddington form of the Schwarzschild metric of GR, so that all the 
standard tests of a gravitation theory are satisfied. 

The differences between GR and the presented description emerge 
when the the neglected O(1/R3) terms generated by the monopole 
component are included: We find that the Schwarzschild boundary at 
Rs = 2γM/c2 still exists as a ‘one-way membrane’ for test-particles, but 
the essential singularity which exists in the GR model at R = 0 does 
not exist here. Instead, what happens is that at some R = R*, satisfying 
0 < R*<Rs, gravitational attraction ‘turns off’, and becomes a 
repulsion for 0 < R < R*; the origin, R = 0, then becomes the top of a 
‘potential hill’. The effect of this on test-particles is that, instead of 
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collapsing into a singularity at R = 0, they orbit the origin inside 
R = Rs, oscillating between R = 0 and R = Rs. This behaviour on the 
interior on the Schwarzschild boundary has obvious implications for 
the physics of gravitational collapse, and in the following section we 
enter in a tentative discussion of what these might be.  

When we go on to consider higher order terms in the multipole 
expansion of the model, we find that dipole terms are explicitly 
absent. This is significant since an independence of dipole terms is 
the only objective requirement imposed by the binary pulsar 
observations on any multipole radiation model of a gravitation theory 
(Will 1981). Consequently, the presented view is capable of 
describing gravitational phenomena up to, and including, those 
associated with the binary pulsar so that all the standard modern tests 
of a gravitation theory are satisfied.  

Significant consequences of gravitation-from-inertia are: concepts 
of curved space-time are made redundant to gravitational physics; the 
essential singularities at gravitational origins, which are characteristic 
of both Newtonian gravitation and GR, do not exist; gravitational 
process becomes a retarded particle/particle interaction of a 
conventional kind. 

Gravitation 2. The Physics of 
Attraction/Repulsion  
It is perhaps helpful to understand how ‘gravitational attraction’ can 
become ‘gravitational repulsion’ in the presented description: 
According to this description, gravitational phenomena arise when 
retarded inertial disturbances, originating at some massive source, 
interact with test-particles, and result in a transfer of linear-
momentum. If such a test-particle is in the unbounded region R > R*, 
then the transfer of linear-momentum from the test-particle to the 
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outward-going disturbances. This results in the inwardly directed 
radial acceleration of the test-particle, that we conventionally attribute 
to ‘gravitational attraction’. However, if the test-partice is in the 
interior region, 0 < R < R*, then non-linear effects cause a reversal in 
the transfer mechanism so that the transfer of linear-momentum is to 
the test-particle from the disturbance, giving rise to a gravitational 
repulsion in this interior region.  

Gravitation 3. Tentative Discussion 
The gravitational-repulsion phenomenon in the test-particle/point-
massive-source case is not observable since the test-particle is 
confined within the Schwarzschild boundary of the massive-source. 
However, suppose the idealized model of the test-particle/point-
massive-source interaction is replaced by the less idealized model of 
the point-massive-source/point-massive-source interaction: We can 
visualize this as two point massive sources, each sitting within its own 
Schwarzschild boundary, being attracted to the other. Suppose their 
respective orbits are such that the two particles fall into each other; 
the two particles will then reside within a joint Schwarzschild 
boundary which is a connected surface formed as the union of the two 
original surfaces - we can think of two soap bubbles coming into 
contact. The two particles will continue to fall towards each other 
until attraction becomes repulsion, and a ‘bounce’ occurs. Since the 
geometry of the joint Schwarzschild boundary must depend on the 
relative displacements of the two sources it contains, we can easily 
imagine that it might revert into two disconnected surfaces under the 
action of the bounce. In this case, the bounce-phenomenon will be 
observable to an external observer.  

The question then arises, does any evidence exist which is 
consistent with this kind of view? There is evidence, which Victor 
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Clube has been largely responsible for putting before us: Victor’s 
studies on the motions of globular clusters (used as characteristic 
marker particles) within our own galaxy indicate that the class of all 
these clusters appears to be in a state of outward radial motion away 
from the galactic centre. In his opinion, this outflow indicates that all 
of the material in the galaxy must be considered to share the same 
state of motion, so that a picture emerges of our galaxy being, at 
present, in an expanding state (a state which is not to be confused 
with the supposed Big-Bang driven expansion of the Universe). 
Victor sees this present state as simply the expanding phase of a 
general in-out pulsation of the galaxy and, as he points out in his 
article, it is very difficult to understand this condition on the basis of 
either Newtonian or Einsteinien gravitation. As a consequence, he 
uses the phenomenon to make hypotheses about the possible 
behaviour of matter in very dense conglomerations (his idea of 
temporary mass inflation), which would go some way towards 
accounting for the observations. However, Victor’s image of our 
galaxy, as a system undergoing cyclic expansion/contraction, is 
entirely consistent with the gravitational model discussed here, in 
which collapsing matter eventually goes into a ‘bounce’ phase.  

A Speculation: Quantized Redshifts 
The presented work is predicated upon the recognition that inertial 
effects are only explicitly manifested in the particular class of 
collision we have termed as an “inertially determined collision”, and I 
have indicated how the resulting theoretical structure supports 
retarded inertial interactive effects which cannot be distinguished 
from gravitational effects. What I have not done—although I have 
tried—is to extend the notion of the inertially determined collision 
between massive particles to interactions between photons, or 
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electromagnetic waves. I have a strong suspicion (but no evidence!) 
that such interactions will account for the redshift quantization 
phenomenon, uncovered by Tifft (1986), and recently substantiated in 
analyses by Napier (1991). 

However, my own technical inadequacies apart, my abortive 
attempts to implicate the inertial interaction in redshift quantization 
suggested to me that the problems encountered were rooted more in a 
general lack of understanding concerning the nature of what a photon 
actually is, (for example, is it really massless, or does it possess a very 
small mass as Vigier (1990) believes?), and seemed to draw me into a 
view of the photon which was strangely echoed in Jacques Trempe’s 
posthumous article in APEIRON. 

I concluded that the study required so much speculation on my 
part, about the nature of the photon, that it was, at best, premature and 
that the problem of redshift quantization is perhaps not yet ripe for 
resolution (at least, not by me!). 

Conclusions 
We have analysed the class of all collisions between massive 

particles to show that this class could be partitioned into those 
collisions involving four particles, or less—which we have called the 
subclass of inertially determined collisions—and the rest, and we 
have subsequently shown that the inertially determined collisions can 
be given a representation in terms of the geometry on a collision 
manifold. 

In additional work, we show that this collision manifold geometry 
supports not only the inertially determined interactions between 
colliding particles, considered here, but also inertially determined 
interactions between non-colliding particles which are arbitrated by 
retarded potential fields. We subsequently show that these retarded 
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inertial processes cannot be distinguished from gravitational 
processes, up to and including those associated with the binary pulsar. 

In this way, the equivalence between inertial and gravitational 
mass can be finally understood, and General Relativity is made 
superfluous to the needs of physics. 

This view of gravitation, as an inertial process, also implies that 
there are no essential singularities involved in gravitational 
phenomenon (singularities = bad physics?) and that, associated with 
the non-existence of such singularities, gravitational attraction 
becomes gravitational repulsion for very near interactions. There is 
evidence, in galaxy motions, which lends credence to the existence of 
such phenomena. 

In closing, I would like to express a deep felt gratitude towards 
Jean-Claude Pecker for his unconditional support and practical 
encouragement given to me over the past several years. 
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