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Abstract. We investigate the Yilmaz Cosmology by working out the Friedmann-type equations generated by assuming the
Cosmological metric for a flat space for the Yilmaz theory of gravitation. In the case of matter-conserving Cosmologies we
find the theory demands that the total energy density of the Cosmological fluid is zero. No configuration of vacuum radiation
and inert matter can be found that is both compatible with this constraint and with observation. The steady-state Cosmology
may, however, be viable.
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INTRODUCTION

Yilmaz [1-6] has published a theory of gravitation which is Einstein GR supplemented with a novel stress energy term.
Writing

T ν
µ = τν

µ + tν
µ , (1)

then τν
µ is the traditional stress-energy tensor of the sources (matter and fields). The additional term tν

µ , which is a
function of the metric tensor, stands for the stress-energy of the gravitational field, alleged by Yilmaz to have been
improperly omitted in the Einstein theory. As a consequence of the latter, in the case of a mass singularity the Yilmaz
theory gives the line element

ds2 = exp(−2ϕ)dt2− exp(2ϕ)dx2, (2)

where ϕ = Gm/r. The corresponding metric has been called ‘Yilmaz exponential metric’ [7-9]. By contrast, in
isotropic coordinates the Schwarzschild (GR) line element is

ds2 =
(

1−ϕ/2
1+ϕ/2

)2

dt2− (1+ϕ/2)4 dx2. (3)

Comparing the two one finds for the PPN expansions

Yilmaz: g00 = 1−2ϕ +2ϕ2− 4
3

ϕ3... g11 =−1−2ϕ−2ϕ2 + ... (4)

GR: g00 = 1−2ϕ +2ϕ2− 3
2

ϕ3... g11 =−1−2ϕ− 3
2

ϕ2 + ... (5)

Observational tests of GR are currently insufficiently sensitive to probe the Schwarzschild metric beyond the second
order in g00 and beyond the first order in g11. Consequently the Yilmaz theory gives predictions that are observationally
indistinguishable from GR for the standard tests of light bending, perihelion advance, and Shapiro time delay. Because
the Yilmaz theory is a metric theory, EM fields are red-shifted in the vicinity of large masses in accord with GR and the
’standard test’. The Yilmaz-predicted radiation rate for systems with a changing quadrupole moment has not, to date,
been computed. No comparison is possible therefore between the Yilmaz and GR predictions of, for example, the rate
of orbital decay of binary pulsars. Because g00 is never zero the Yilmaz metric does not give rise to an event horizon.
The theory admits therefore, the possibility of arbitrarily large gravitational red-shifts in static stable conditions, i.e.
not subject to, nor in the process of, gravitational collapse. Robertson [7,8] has suggested that some Neutron stars and
black hole candidates may be such ‘Yilmaz stars’, and Clapp [9] has suggested that a significant component of Quasar
red-shift may be gravitational. Confirmation of either of these hypotheses would certainly favor the Yilmaz theory of
Einstein GR.
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The merits and demerits of the theory have been hotly debated in the literature, primarily from a mathematical
viewpoint [10-20]. A general discussion of the issues is given in [21]. The main issue is whether or not the quantity tν

µ
in Eq. (1) as defined by Yilmaz in terms of the metric tensor, is really a tensor. In the opinion of the author the most
persuasive argument in favor of the Yilmaz theory is the argument by Lo [20]: that the formula traditionally used to
describe gravitational radiation cannot be derived from Einstein’s equations without a (novel) stress-energy tensor for
the gravitational field. Though he does not endorse it, Lo cites the Yilmaz theory as a possible example.

In this paper we briefly explore the Cosmological predictions of the Yilmaz theory, which provides an opportunity
for additional independent observational tests whilst circumventing the debate on the mathematical status of the theory.

YILMAZ THEORY

A characteristic of the Yilmaz theory is the central role played by an intermediate tensor field ϕ̂ which is related to the
metric through ([1,22])

gab = (η exp(2(ϕ1−2ϕ̂)))ab , (6)

where η is the Minkowski metric, 1 is the mixed unit tensor, ϕ̂ is a mixed symmetric tensor and ϕ its trace. The field
is the solution of the second order equation

∂ 2
Bϕb

a −
1√−g

∂c

(√−g∂ bϕc
a

)
= 4πGτb

a (7)

where, as stated above, τ is the ‘standard’ stress energy tensor of matter, vacuum, and radiation. The Yilmaz theory is
effectively characterized by Eqs. (6) and (7). They are consistent with the Einstein equations with the decomposition
(1), i.e.

Rµν − 1
2

gµν R =−8πG
(
τµν + tµν

)
(8)

(a cosmological / vacuum term, if present, is implicit in τ) provided t has the form, allegedly that of the stress energy
tensor of the gravitational field, specified by Yilmaz. That is, the Einstein equations collapse to (7) in the event that t
is so specified and given the relation (6).

In this document we will consider only the flat space metrics i.e. having Friedmann-Robertson-Walker (FRW) line
element

ds2 = dt2−a(t)2 dx2 (9)

(with a(0) = 1). Accordingly any conclusions reached are applicable only in that context. The published Yilmaz theory
[1] is written in terms of Harmonic coordinates, (ζ ,x,y,z) say, defined by

∂a

(
gab√−g

)
= 0. (10)

Eq. (10) is satisfied after making the coordinate transformation of the time variable

dt = dζ a3 (11)

where ζ is the harmonic time, whence the line element (9) becomes

ds2 = a6dζ 2−a2dx2 (12)

and
√−g = a6. In an early paper Yilmaz [22] proposed a different line element

ds2 = dt2 exp
(−α2r2)− exp

(
α2r2)dx2 (13)

which he regarded as better suited to the application of his theory to Cosmology, and which was subsequently adopted
by other authors [23-25]. However, as discussed in [21], Eq. (13) is incompatible with the Cosmological Principle and
will not be considered here.



YILMAZ-FRIEDMANN EQUATIONS

First we solve for the tensor ϕ̂ in terms of the scale factor a(ζ ). Comparing (12) and (6) we have

{gab}= diag
(

a6 (ζ ) ,−a2 (ζ ) ,−a2 (ζ ) ,−a2 (ζ )
)

, (14)

and therefore ϕ̂ is diagonal, isotropic, and having each element exclusively a function of harmonic time ζ . The trace
is

ϕ = ϕ t
t +3ϕx

x (15)

and the exponent in (6) is therefore

ϕ1−2ϕ̂ = diag
(
3ϕx

x −ϕ t
t ,ϕ

t
t +ϕx

x ,ϕ t
t +ϕx

x ,ϕ t
t +ϕx

x
)
. (16)

Inserting this into (6) and using (14) one obtains the two equations

exp
(
2
(
3ϕx

x −ϕ t
t
))

= a6, exp
(
2
(
ϕ t

t +ϕx
x
))

= a3 (17)

which immediately give
{ϕa

b}= diag(0, loga, loga, loga) . (18)

Substituting (18) into (7) it is now possible to write down the equation for the scale factor in terms of the sources. The
second term on the left hand side in (7) is

∀a,b : ∂c

(√−g∂ bϕc
a

)
= ∂a

(√−ggbd∂dϕc
a

)
= ∂a

(√−g
gbb

∂bϕa
a (ζ )

)
(19)

(no sum is implied in the last expression). The final expression in (19) is zero unless a = b = 0 because the time
derivative ∂0 is the only non-zero derivative of (any function of) the components of ϕ̂ . But (18) gives ϕ0

0 (ζ ) = 0, and
therefore the full expression in (19) is zero. With the help of (10) the remaining Beltrami operator in (7) is

∂ 2
B =

1√−g
∂a
√−g∂ a =

1√−g
∂agab√−g∂b = gab∂a∂b =

1
a6

∂ 2

∂ζ 2 −
1
a2 ∇2 → 1

a6
∂ 2

∂ζ 2 . (20)

Combining (20), (19) and (7), and using that the stress-energy tensor for a cosmological fluid is
{

τb
a

}
= diag(ρ,−p,−p,−p) , (21)

where ρ is a coordinate density, one obtains the two equations

ρ = 0 (22)

and
d2 loga

dζ 2 =−4πGa6 p (23)

where ρ is the total energy density and p is the total pressure. These equations correspond respectively to the first and
second Friedmann equations of GR.

YILMAZ COSMOLOGY

Decomposing the stress-energy tensor into contributions from matter, radiation, and vacuum, the first Friedmann
equation for the Yilmaz theory is

ρ = ρm +ρr +ρv = 0. (24)

The vacuum energy coordinate density is assumed to be constant in accord with its origin as the 0,0 term in the
Cosmological term or, alternatively, in accord with its origin as the net energy density of the zero point fields of QFT.
It follows that

ρm +ρr =−ρv = constant. (25)



Once matter and radiation have decoupled, barring some coincidence, (25) gives that ρm and ρr must individually be
constant. The observed fact that the matter and radiation have positive energy densities requires that the vacuum must
have an overall negative energy density. Since Fermions and Bosons contribute to the overall vacuum energy density
with different signs, QFT is compatible with any value in (−∞,∞) for the total. A negative value therefore, though
unusual, is acceptable.

The equations of state are pi = kiρi, where i ∈ {m, r, v} and km = 0, kr = 1/3, kv =−1. It follows from the above
that the pi must be constant. With this (23) can be written

d2 loga
dζ 2 =−4πGa6

(
1
3

ρr−ρv

)
=−4πGa6

(
ρm +

4
3

ρr

)
(26)

where we used (25) and where the expression in parentheses is independent of harmonic time. Returning to FRW time
using (11), this is

a3 d
dt

(
a3 d

dt
loga

)
=−4πGa6

(
ρm +

4
3

ρr

)
. (27)

This equation is most easily solved by substituting b = a3, whereupon

1
3

b
d
dt

(
b

d
dt

logb
)

=−4πGb2
(

ρm +
4
3

ρr

)

⇒ b̈ =−12πGb
(

ρm +
4
3

ρr

) (28)

The solutions are

b =α sin(ωt +φ) ; ω =

√
12πG

(
ρm +

4
3

ρr

)

⇒ a =α1/3 sin1/3 (ωt +φ)

(29)

where α and φ are arbitrary constants. It is concluded that the theory predicts an oscillating universe. Clearly φ simply
offsets the time of the initial singularity and can be ignored. Taking into account that the sign of the scale factor is
unobservable, Figure 1 is a plot of its modulus.
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FIGURE 1. Plot of the modulus of the scale factor as given by Eq. (29)

The deceleration parameter can be computed using (29) to give

q≡− äa
ȧ2 =

3
cos2 (ωt +φ)

−1. (30)



Note that as a result of this definition, q is independent of the sign of the scale factor and therefore, except perhaps
at the points where a changes sign, the result (30) is unchanged if one were to use |a| instead of a in the definition.
From (30) it is deduced that the deceleration parameter is always positive and greater than 2. In terms of the Hubble
parameter

H ≡ ȧ
a

=
ω
3

cot(ωt +φ) (31)

the deceleration parameter is

q = 3
(

1+
( ω

3H

)2
)
−1 = 2+

4πG
H2

(
ρm +

4
3

ρr

)
= 2+

3
2

Ωm +2Ωr (32)

where
Ωi =

8πG
3H2 ρi (33)

are functions of time. The SN1a data permit estimates of the deceleration parameter that are fairly independent of the
cosmological model. Currently the data from nearby supernovae (z < 1) consistently indicate a negative value of q0
[26-28], at variance with the prediction above that q > 2 for all time.

CONCLUSION AND REMARKS

Assuming that space is flat, the Yilmaz theory of gravity demands that the total energy density of the universe is zero.
If this is achieved by balancing the observed positive energy density of matter with a negative vacuum, then the theory
predicts an oscillating scale factor with angular frequency

√
12πG(ρm +(4/3)ρr). The coordinate density of the total

of matter and radiation energy is predicted to remain constant at all times. During times when these are decoupled (e.g
post recombination during the expansion phase) the coordinate density of both matter and radiation are predicted to
remain independently constant. An implication is that the negative vacuum can be regarded as giving birth to matter
and radiation at exactly the right rate during expansion, and absorbing matter and radiation during contraction, so
as to maintain their coordinate densities constant at all times. Consequently the proper energy density of matter and
radiation increases at the expense of an increase in the magnitude of the negatively-signed proper energy density of
the vacuum. Conversely, during contraction the coordinate density of matter and radiation remain constant with the
result that the proper energy density of matter and radiation decreases promoting a decrease in the magnitude of the
negatively-signed proper energy density of the vacuum.

The Yilmaz universe is always decelerating with q > 2. That prediction is at variance with the curve fit to the
supernovae data, so that, to the degree these data can be trusted, the Yilmaz Cosmology fails this observational test.
The Yilmaz prediction of deceleration is changed if one admits a vacuum-like term with a different equation of state.
For example, a term of the kind advocated by Hoyle et al [29] to model matter creation wherein the pressure has the
same sign as the energy density, can be made to cause the Yilmaz theory to predict an accelerating universe [21].

As a result of the stipulation of the metric (9), these conclusions are applicable exclusively to the case of flat space.
The cases of spherical and hyperbolic space warrant their own investigation.
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