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1. Introduction

A relativistic modified gravity (MOG) called Scalar-Tensor-Vector Gravity (STVG)

desribes a self-consistent, stable gravity theory that contains Einstein’s general rel-

ativity in a well-defined limit.1 The theory has an extra degree of freedom, a vector

field called a “phion” field whose curl is a skew symmetric field that couples to

matter (“fifth force”). The spacetime geometry is described by a symmetric Ein-

stein metric. An alternative relativistic gravity theory called Metric-Skew-Tensor

Gravity (MSTG) has also been formulated2 in which the spacetime is described by

a symmetric metric, and the extra degree of freedom is a skew symmetric second

rank tensor field. Both of these theories yield the same weak field consequences for

physical systems.

The classical STVG theory allows the gravitational coupling “constant” G and

the coupling of the phion field and its effective mass to vary with space and time

as scalar fields.

A MOG should explain the following physical phenomena:

∗Talk presented at the International Workshop From Quantum to Cosmos: Fundamental Physics

in Space, 22-24 May, 2006, Warrenton, Virginia, USA
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(1) Galaxy rotation curve data;

(2) Mass profiles of x-ray clusters;

(3) Gravitational lensing data for galaxies and clusters of galaxies;

(4) The cosmic microwave background (CMB) including the acoustical oscillation

power spectrum data;

(5) The formation of proto-galaxies in the early universe and the growth of galaxies;

(6) N-body simulations of galaxy surveys;

(7) The accelerating expansion of the universe.

We seek a unified description of solar system, astrophysical and large-scale cos-

mological data without exotic non-baryonic dark matter. Dark matter in the form

of particles has until now not been discovered in spite of large-scale experimental

efforts.3 The accelerating expansion of the universe should be explained by the

MOG theory without postulating a cosmological constant.

2. Action and Field Equations

Our MOG action takes the form1:

S = SGrav + Sφ + SS + SM , (1)

where

SGrav =
1

16π

∫

d4x
√−g

[

1

G
(R+ 2Λ)

]

, (2)

Sφ = −
∫

d4x
√
−g

[

ω

(

1

4
BµνBµν + V (φ)

)]

, (3)

and

SS =

∫

d4x
√−g(F1 + F2 + F3), (4)

where

F1 =
1

G3

(

1

2
gµν∇µG∇νG− V (G)

)

, (5)

F2 =
1

G

(

1

2
gµν∇µω∇νω − V (ω)

)

, (6)

F3 =
1

µ2G

(

1

2
gµν∇µµ∇νµ− V (µ)

)

. (7)

We have chosen units with c = 1, ∇µ denotes the covariant derivative with

respect to the metric gµν . We adopt the metric signature ηµν = diag(1,−1,−1,−1)

where ηµν is the Minkowski spacetime metric, and R = gµνRµν where Rµν is the

symmetric Ricci tensor. Moreover, V (φ) denotes a potential for the vector field φµ,

while V (G), V (ω) and V (µ) denote the three potentials associated with the three
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scalar fields G(x), ω(x) and µ(x), respectively. The field ω(x) is dimensionless and

Λ denotes the cosmological constant. Moreover,

Bµν = ∂µφν − ∂νφµ. (8)

The field equations and the test particle equations of motion are derived in Ref. 1.

The action for the field Bµν is of the Maxwell-Proca form for a massive vector

field φµ. It can be proved that this MOG possesses a stable vacuum and the Hamil-

tonian is bounded from below. Even though the action is not gauge invariant, it can

be shown that the longitudinal mode φ0 (where φµ = (φ0, φi) (i = 1, 2, 3)) does not

propagate and the theory is free of ghosts. Similar arguments apply to the MSTG

theory.2a

3. Modified Newtonian Acceleration Law and Galaxy Dynamics

The modified acceleration law can be written as1:

a(r) = −G(r)M

r2
, (9)

where

G(r) = GN

[

1 +

√

M0

M

(

1− exp(−r/r0)

(

1 +
r

r0

))]

(10)

is an effective expression for the variation of G with respect to r, and GN denotes

Newton’s gravitational constant. A good fit to a large number of galaxies has been

achieved with the parameters5:

M0 = 9.60× 1011 M⊙, r0 = 13.92 kpc = 4.30× 1022 cm. (11)

In the fitting of the galaxy rotation curves for both LSB and HSB galaxies, using

photometric data to determine the mass distribution M(r),5 only the mass-to-light

ratio 〈M/L〉 is employed, once the values of M0 and r0 are fixed universally for all

LSB and HSB galaxies. Dwarf galaxies are also fitted with the parameters5:

M0 = 2.40× 1011M⊙, r0 = 6.96 kpc = 2.15× 1022 cm. (12)

By choosing universal values for the parameters G∞ = GN (1+
√

M0/M), (M0)clust
and (r0)clust, we are able to obtain satisfactory fits to a large sample of X-ray cluster

data.6

4. Solar System and Binary Pulsar

Let us assume that we are in a distance scale regime for which the fields G, ω and

µ take their approximate renormalized constant values:

G ∼ G0(1 + Z), ω ∼ ω0A, µ ∼ µ0B, (13)

aFor a detailed discussion of possible instabilities and pathological behavior of vector-gravity the-
ories, see Ref. 4.
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where G0, ω0 and µ0 denote the “bare” values of G,ω and µ, respectively, and Z,A

and B are the associated renormalization constants. We obtain from the equations

of motion of a test particle the orbital equation (we reinsert the speed of light c)1:

d2u

dφ2
+ u =

GM

c2J2
− K

c2J2
exp(−r/r0)

[

1 +

(

r

r0

)]

+
3GM

c2
u2. (14)

where u = 1/r, K = GN

√
MM0 and J denotes the orbital angular momentum.

Using the large r weak field approximation, we obtain the orbit equation for r ≪ r0:

d2u

dφ2
+ u = N + 3

GM

c2
u2, (15)

where JN denotes the Newtonian value of J and

N =
GM

c2J2
N

− K

c2J2
N

. (16)

We can solve Eq.(15) by perturbation theory and find for the perihelion advance

of a planetary orbit

∆ω =
6π

c2L
(GM⊙ −K⊙), (17)

where JN = (GM⊙L/c
2)1/2, L = a(1− e2) and a and e denote the semimajor axis

and the eccentricity of the planetary orbit, respectively.

For the solar system r ≪ r0 and from the running of the effective gravitational

coupling constant, G = G(r), we have G ∼ GN within the experimental errors for

the measurement of Newton’s constant GN . We choose for the solar system

K⊙

c2
≪ 1.5 km (18)

and use G = GN to obtain from (17) a perihelion advance of Mercury in agreement

with GR. The bound (18) requires that the coupling constant ω varies with distance

in such a way that it is sufficiently small in the solar system regime and determines

a value for M0 that is in accord with the bound (18).

For terrestrial experiments and orbits of satellites, we have also thatG ∼ GN and

forK⊕ sufficiently small, we then achieve agreement with all gravitational terrestrial

experiments including Eötvös free-fall experiments and “fifth force” experiments.

For the binary pulsar PSR 1913+16 the formula (17) can be adapted to the

periastron shift of a binary system. Combining this with the STVG gravitational

wave radiation formula, which will approximate closely the GR formula, we can

obtain agreement with the observations for the binary pulsar. The mean orbital

radius for the binary pulsar is equal to the projected semi-major axis of the binary,

〈r〉N = 7× 1010 cm, and we choose 〈r〉N ≪ r0. Thus, for G = GN within the exper-

imental errors, we obtain agreement with the binary pulsar data for the periastron

shift when

KN

c2
≪ 4.2 km. (19)
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For a massless photon we have

d2u

dφ2
+ u = 3

GM

c2
u2. (20)

For the solar system using G ∼ GN within the experimental errors gives the light

deflection:

∆⊙ =
4GNM⊙

c2R⊙

(21)

in agreement with GR.

5. Pioneer Anomaly

The radio tracking data from the Pioneer 10/11 spacecraft during their travel

to the outer parts of the solar system have revealed an anomalous acceleration.

The Doppler data obtained at distances r from the Sun between 20 and 70 astro-

nomical units (AU) showed the anomaly as a deviation from Newton’s and Ein-

stein’s gravitational theories. The anomaly is observed in the Doppler residuals

data, as the differences of the observed Doppler velocity from the modelled Doppler

velocity, and can be represented as an anomalous acceleration directed towards

the Sun, with an approximately constant amplitude over the range of distance,

20 au < r < 70 au7,8,9,10:

aP = (8.74± 1.33)× 10−8 cm s−2. (22)

After a determined attempt to account for all known sources of systematic errors,

the conclusion has been reached that the anomalous acceleration towards the Sun

could be a real physical effect that requires a physical explanation.7,8,9,10b

We can rewrite the acceleration in the form

a(r) = −GNM

r2

{

1 + α(r)

[

1− exp(−r/λ(r))

(

1 +
r

λ(r)

)]}

. (23)

We postulate a gravitational solution that the Pioneer 10/11 anomaly is caused

by the difference between the running of G(r) and the Newtonian value, GN . So

the Pioneer anomalous acceleration directed towards the center of the Sun is given

by

aP = −δG(r)M⊙

r2
, (24)

where

δG(r) = GNα(r)

[

1− exp(−r/λ(r))

(

1 +
r

λ(r)

)]

. (25)

bIt is possible that a heat transfer mechanism from the spacecraft transponders could produce a
non-gravitational explanation for the anomaly.
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Lacking at present a solution for the variations of α(r) and λ(r) in the solar system,

we adopt the following parametric representations of the “running” of α(r) and

λ(r):

α(r) = α∞(1− exp(−r/r̄))b/2, (26)

λ(r) = λ∞(1− exp(−r/r̄))−b. (27)

Here, r̄ is a non-running distance scale parameter and b is a constant.

In Ref. 11, a best fit to the acceleration data extracted from Figure 4 of Ref. 10

was obtained using a nonlinear least-squares fitting routine including estimated

errors from the Doppler shift observations8. The best fit parameters are

α∞ = (1.00± 0.02)× 10−3,

λ∞ = 47± 1 au,

r̄ = 4.6± 0.2 au,

b = 4.0. (28)

The small uncertainties in the best fit parameters are due to the remarkably low

variance of residuals corresponding to a reduced χ2 per degree of freedom of 0.42

signalling a good fit. An important result obtained from our fit to the anomalous

acceleration data is that the anomalous acceleration kicks-in at the orbit of Saturn.

Fifth force experimental bounds plotted for log10 α versus log10 λ are shown in

Fig. 1 of Ref. 12 for fixed values of α and λ. The updated 2003 observational data

for the bounds obtained from the planetary ephemerides is extrapolated to r =

1015m = 6, 685 au13. However, this extrapolation is based on using fixed universal

values for the parameters α and λ. Since known reliable data from the ephemerides

of the outer planets ends with the data for Pluto at a distance from the Sun,

r = 39.52 au = 5.91 × 1012m, we could claim that for our range of values 47 au <

λ(r) < ∞, we predict α(r) and λ(r) values consistent with the un-extrapolated fifth

force bounds.

A consequence of a variation of G andGM⊙ for the solar system is a modification

of Kepler’s third law:

a3PL = G(aPL)M⊙

(

TPL

2π

)2

, (29)

where TPL is the planetary sidereal orbital period and aPL is the physically mea-

sured semi-major axis of the planetary orbit. For given values of aPL and TPL, (29)

can be used to determine G(r)M⊙.

For several planets such as Mercury, Venus, Mars and Jupiter there are plan-

etary ranging data, spacecraft tracking data and radiotechnical flyby observations

available, and it is possible to measure aPL directly. For a distance varying GM⊙

we derive14,15:
(

aPL

āPL

)

= 1 + ηPL =

[

G(aPL)M⊙

G(a⊕)M⊙

]1/3

. (30)
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Here, it is assumed that GM⊙ varies with distance such that ηPL can be treated as

a constant for the orbit of a planet. We obtain

ηPL =

[

G(aPL)

G(a⊕)

]1/3

− 1. (31)

The results for ∆ηPL due to the uncertainty in the planetary ephemerides

are presented in Ref. 11 for the nine planets and are consistent with the solar

ephemerides.

The validity of the bounds on a possible fifth force obtained from the ephemerides

of the outer planets Uranus, Neptune and Pluto are critical in the exclusion of a

parameter space for our fits to the Pioneer anomaly acceleration. Beyond the outer

planets, the theoretical prediction for η(r) approaches an asymptotic value:

η∞ ≡ lim
r→∞

η(r) = 3.34× 10−4. (32)

We see that the variations (“running”) of α(r) and λ(r) with distance play an

important role in interpreting the data for the fifth force bounds. This is in contrast

to the standard non-modified Yukawa correction to the Newtonian force law with

fixed universal values of α and λ and for the range of values 0 < λ < ∞, for which the

equivalence principle and lunar laser ranging and radar ranging data to planetary

probes exclude the possibility of a gravitational and fifth force explanation for the

Pioneer anomaly.16,17,18

A study of the Shapiro time delay prediction in our MOG is found to be con-

sistent with time delay observations and predicts a measurable deviation from GR

for the outer planets Neptune and Pluto.19

6. Gravitational Lensing

The bending angle of a light ray as it passes near a massive system along an ap-

proximately straight path is given to lowest order in v2/c2 by

θ =
2

c2

∫

|a⊥|dz, (33)

where ⊥ denotes the perpendicular component to the ray’s direction, and dz is the

element of length along the ray and a denotes the acceleration.

From (20), we obtain the light deflection

∆ =
4GM

c2R
=

4GNM

c2R
, (34)

where

M = M

(

1 +

√

M0

M

)

. (35)

The value of M follows from (10) for clusters as r ≫ r0 and

G(r) → G∞ = GN

(

1 +

√

M0

M

)

. (36)
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We choose for a cluster M0 = 3.6× 1015M⊙ and a cluster mass Mclust ∼ 1014M⊙,

and obtain
(

√

M0

M

)

clust

∼ 6. (37)

We see that M ∼ 7M and we can explain the increase in the light bending without

exotic dark matter.

For r ≫ r0 we get

a(r) = −GNM

r2
. (38)

We expect to obtain from this result a satisfactory description of lensing phenomena

using Eq.(33).

7. Modified Friedmann Equations in Cosmology

We shall base our results for the cosmic microwave background (CMB) power spec-

trum on our MOG without a second component of cold dark matter (CDM). Our

description of the accelerating universe20,21 is based on ΛG in Eq.(62) derived from

our varying gravitational constant.22

We adopt a homogeneous and isotropic Friedmann-Lemâıtre-Robertson-Walker

(FLRW) background geometry with the line element

ds2 = dt2 − a2(t)

(

dr2

1− kr2
+ r2dΩ2

)

, (39)

where dΩ2 = dθ2 + sin2 θdφ2 and k = 0,−1,+1 for a spatially flat, open and closed

universe, respectively. Due to the symmetry of the FLRW background spacetime,

we have φ0 ≡ φ 6= 0, φi = 0 and Bµν = 0.

We define the energy-momentum tensor for a perfect fluid by

T µν = (ρ+ p)uµuν − pgµν , (40)

where uµ = dxµ/ds is the 4-velocity of a fluid element and gµνu
µuν = 1. Moreover,

we have

ρ = ρm + ρφ + ρS , p = pm + pφ + pS , (41)

where ρi and pi denote the components of density and pressure associated with the

matter, the φµ field and the scalar fields G, ω and µ, respectively.

The modified Friedmann equations take the form1:

ȧ2(t)

a2(t)
+

k

a2(t)
=

8πG(t)ρ(t)

3
+ f(t) +

Λ

3
, (42)

ä(t)

a(t)
= −4πG(t)

3
[ρ(t) + 3p(t)] + h(t) +

Λ

3
, (43)
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where ȧ = da/dt and

f(t) =
ȧ(t)

a(t)

Ġ(t)

G(t)
, (44)

h(t) =
1

2

(

G̈(t)

G(t)
− Ġ2(t)

G2(t)
+ 2

ȧ(t)

a(t)

Ġ(t)

G(t)

)

. (45)

From (42) we obtain

ρa3 =
3

8πG
a

(

ȧ2 + k − a2f − 1

3
a2Λ

)

. (46)

This leads by differentiation with respect to t to the expression:

ρ̇+ 3
d ln a

dt
(ρ+ p) + I = 0, (47)

where

I =
3a2

8πG
(2ȧf + aḟ − 2ȧh). (48)

An approximate solution to the field equations for the variation of G in Ref. 1

in the background FLRW spacetime is given by

G̈ + 3HĠ + V ′(G) = 1

2
GNG2

(

ρ− 3p+
Λ

4πGNG

)

, (49)

where G(t) = G(t)/GN and H = ȧ/a. A solution for G in terms of a given potential

V (G) and for given values of ρ, p and Λ can be obtained from (49).22

The solution for G must satisfy a constraint at the time of big bang

nucleosynthesis.23 The number of relativistic degrees of freedom is very sensitive to

the cosmic expansion rate at 1 MeV. This can be used to constrain the time depen-

dence of G. Measurements of the 4He mass fraction and the deuterium abundance

at 1 MeV lead to the constraint G(t) ∼ GN . We impose the condition G(t) → 1 as

t → tBBN where tBBN denotes the time of the big bang nucleosynthesis. Moreover,

locally in the solar system we must satisfy the observational bound from the Cassini

spacecraft measurements24:

|Ġ/G| ≤ 10−12yr−1. (50)

We shall now impose the approximate conditions at the epoch of recombination:

2ȧf + aḟ ∼ 2ȧh, (51)

d

dt

(

Ġ

G

)

< 2
ȧ

a

Ġ

G
. (52)

We find from (45) and (52) that f ∼ h, and from the condition (51) we obtain

ḟ ≡ dΛG

dt
∼ 0, (53)
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where

ΛG =
ȧ

a

Ġ

G
. (54)

By setting the cosmological constant Λ = 0, we get the generalized Friedmann

equations

ȧ2

a2
+

k

a2
=

8πGρ

3
+ ΛG, (55)

ä

a
= −4πG

3
(ρ+ 3p) + ΛG. (56)

We now have from (47), (48) and (51) at the epoch of recombination I ∼ 0 and

ρ̇+ 3
d lna

dt
(ρ+ p) ∼ 0. (57)

We adopt the equation of state: p(t) = wρ(t) and derive from (57) the approximate

solution for ρ(t):

ρ(t) ∼ ρ(t0)

(

a0
a(t)

)3(1+w)

, (58)

where a/a0 = 1/(1 + z) and z denotes the red shift. For the matter and radiation

densities ρm and ρr, we have w = 0 and w = 1/3, respectively. This gives

ρm(t) ∼ ρm(t0)(1 + z)3, ρr(t) ∼ ρr(t0)(1 + z)4. (59)

Let us expand G(t) in a power series

G(t) = Geff(tr) + (t− tr)Ġ(tr) + (t− tr)
2G̈(tr) + .... (60)

where t ∼ tr is the time of recombination and Geff(tr) = GN (1 + Z) = const. We

write the generalized Friedmann equation for flat space, k = 0, in the approximate

form

H2 =
8πGeffρm

3
+ ΛG, (61)

where

ΛG = H
Ġ

G
> 0 (62)

and Λ̇G ∼ 0. It follows from (61) that for a spatially flat universe:

Ωm +ΩG = 1, (63)

where

Ωm =
8πGeffρm

3H2
, ΩG =

ΛG

H2
. (64)

We shall postulate that the matter density ρm is dominated by the baryon density,

ρm ∼ ρb, and we have

Ωm ∼ Ωbeff , (65)
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where

Ωbeff =
8πGeffρb
3H2

. (66)

Thus, we assume that the baryon-photon fluid dominates matter before recombina-

tion and at the surface of last scattering without a cold dark matter fluid component.

From the current value: H0 = 7.5× 10−11 yr−1 and (62) and (64), we obtain for

ΩG ∼ 0.7:

|Ġ/G| ∼ 5× 10−11 yr−1, (67)

valid at cosmological scales for red shifts z > 0.1. In the local solar system and for

the binary pulsar PSR 1913+16 for z ∼ 0, the experimental bound is

|Ġ/G| < 5× 10−12 yr−1. (68)

We can explain the accelerated expansion of the universe deduced from supernovae

measurements in the range 0.1 < z < 1.7 using the cosmologically scaled value of

Ġ/G in (67) with Einstein’s cosmological constant Λ = 0.

8. Acoustical Peaks in the CMB Power Spectrum

Mukhanov25 has obtained an analytical solution to the amplitude of fluctuations

in the CMB power spectrum for l ≫ 1:

l(l + 1)Cl ∼
B

π
(O +N). (69)

Here, O denotes the oscillating part of the spectrum, while the non-oscillating con-

tribution can be written as the sum of three parts

N = N1 +N2 +N3. (70)

The oscillating contributions can be calculated from the formula

O ∼
√

π

rhl

[

A1 cos

(

lrp +
π

4

)

+A2 cos

(

2lrp +
π

4

)]

exp(−(l/ls)
2), (71)

where rh and rp are parameters that determine predominantly the heights and

positions of the peaks, respectively. The A1 and A2 are constant coefficients given

in the range 100 < l < 1200 for Ωm ∼ Ωbeff by

A1 ∼ 0.1ξ
((P − 0.78)2 − 4.3)

(1 + ξ)1/4
exp

(

1

2
(l−2
s − l−2

f )l2
)

, (72)

A2 ∼ 0.14
(0.5 + 0.36P)2

(1 + ξ)1/2
, (73)

where

P = ln

(

lI

200(Ωbeff)1/2

)

, (74)
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and I is given by the ratio

ηx
η0

∼ I

z
1/2
x

= 3

(

ΩG

Ωbeff

)1/6(∫ y

0

dx

(sinhx)2/3

)−1
1

z
1/2
x

. (75)

Here, ηx and zx denote a conformal time η = ηx and a redshift in the range η0 >

ηx > ηr when radiation can be neglected and y = sinh−1(ΩG/Ωbeff)
1/2. To determine

ηx/η0, we use the exact solution for a flat dust-dominated universe with a constant

ΛG:

a(t) = a0

(

sinh

(

3

2

)

H0t

)2/3

, (76)

where a0 and H0 denote the present values of a and the Hubble parameter H .

The lf and ls in (72) denote the finite thickness and Silk damping scales, re-

spectively, given by

l2f =
1

2σ2

(

η0
ηr

)2

, l2s =
1

2(σ2 + 1/(kDηr)2)

(

η0
ηr

)2

, (77)

where

σ ∼ 1.49× 10−2

[

1 +

(

1 +
zeq
zr

)−1/2]

, kD(η) =

(

2

5

∫ η

0

dηc2s
τγ
a

)−1/2

, (78)

and τγ is the photon mean-free time.

A numerical fitting formula gives25:

P ∼ ln

(

l

200(Ω0.59
beff )

)

, rp =
1

η0

∫

dηcs(η). (79)

Moreover,

ξ ≡ 1

3c2s
− 1 =

3

4

(

ρb
ργ

)

, (80)

where cs(η) is the speed of sound:

cs(η) =
1√
3

[

1 + ξ

(

a(η)

a(ηr)

)]−1/2

. (81)

We note that ξ does not depend on the value of Geff . For the matter-radiation

universe:

a(η) = ā

[(

η

η∗

)2

+ 2

(

η

η∗

)]

, (82)

where for radiation-matter equality z = zeq:

zeq
zr

∼
(

ηr
η∗

)2

+ 2

(

ηr
η∗

)

, (83)

and ηeq = η∗(
√
2− 1) follows from ā = a(ηeq).
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For the non-oscillating parts, we have

N1 ∼ 0.063ξ2
(P − 0.22(l/lf)

0.3 − 2.6)2

1 + 0.65(l/lf)1.4
exp(−(l/lf)

2), (84)

N2 ∼ 0.037

(1 + ξ)1/2
P − 0.22(l/ls)

0.3 + 1.7)2

1 + 0.65(l/lf)1.4
exp(−(l/ls)

2), (85)

N3 ∼ 0.033

(1 + ξ)3/2
P − 0.5(l/ls)

0.55 + 2.2)2

1 + 2(l/ls)2
exp(−(l/ls)

2). (86)

Mukhanov’s formula25 for the oscillating spectrum is given by

C(l) ≡ l(l + 1)Cl

[l(l+ 1)Cl]low l
=

100

9
(O +N), (87)

where we have normalized the power spectrum by using for a flat spectrum with a

constant amplitude B:

[l(l+ 1)Cl]low l =
9B

100π
. (88)

We adopt the parameters

ΩbN ∼ 0.04, Ωbeff ∼ 0.3, ΩG ∼ 0.7, ξ ∼ 0.6, (89)

and

rh = 0.03, rp = 0.01 lf ∼ 1580, ls ∼ 1100, (90)

where ΩbN = 8πGNρb/3H
2.

The fluctuation spectrum determined by Mukhanov’s analytical formula is dis-

played in Fig. 1 for the choice of cosmological parameters given in (89) and (90).

The role played by CDM in the standard scenario is replaced in the modified

gravity theory by the significant deepening of the gravitational potential well by

the effective gravitational constant, Geff ∼ 7GN , that traps the non-relativistic

baryons before recombination. The deepening of the gravitational well reduces the

baryon dissipation due to the photon coupling pressure and the third and higher

peaks in the acoustic oscillation spectrum are not erased by finite thickness and

baryon drag effects. The effective baryon density Ωbeff = (1+Z)ΩbN ∼ 7ΩbN ∼ 0.3

dominates the fluid before recombination, and we fit the acoustical power spectrum

data without a cold dark matter fluid component. For t < tdec, where tdec denotes

the time of matter-radiation decoupling, luminous baryons and photons are tightly

coupled and for photons the dominant collision mechanism is scattering by non-

relativistic electrons due to Thompson scattering. It follows that luminous baryons

are dragged along with photons and perturbations at wavelength λw < ℓs will be

partly erased where ℓs is the proper Silk length given by ℓs ∼ 3.5MpcΩ
−1/2
beff .30 We

have ℓs ∼ 6Mpc for Ωbeff ∼ 0.3 compared to ℓs ∼ 18Mpc for ΩbN ∼ 0.04. The Silk
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Fig. 1. The solid line shows the result of the calculation of the power spectrum acoustical os-
cillations: C(l), and the ⋄s correspond to the WMAP, Archeops and Boomerang data in units
µK2 × 10−3 as presented in Refs. 27-30.

mass is reduced by more than an order of magnitudec. Thus, sufficient baryonic

perturbations should survive before t ∼ tdec to explain the power spectrum without

collisionless dark matter.

Our predictions for the CMB power spectrum for large angular scales corre-

sponding to l < 100 will involve the integrated Sachs-Wolfe contributions obtained

from the modified gravitational potential.

9. Conclusions

We have demonstrated that a modified gravity theory1 can lead to a satisfactory

fit to the galaxy rotation curve data, mass profiles of x-ray cluster data, the so-

lar system and the binary pulsar PSR 1913+16 data. Moreover, we can provide

an explanation for the Pioneer 10/11 anomalous acceleration data, given that the

anomaly is caused by gravity. We can fit satisfactorily the acoustical oscillation

spectrum obtained in the cosmic microwave background data by employing the

analytical formula for the fluctuation spectrum derived by Mukhanov.25

ΛG obtained from the varying gravitational constant in our MOG replaces the

standard cosmological constant Λ in the concordance model. Thus, the accelerating

expansion of the universe is obtained from the MOG scenario.

An important problem to investigate is whether an N-body simulation calcula-

tion based on our MOG scenario can predict the observed large scale galaxy surveys.

The formation of proto-galaxy structure before and after the epoch of recombination

and the growth of galaxies and clusters of galaxies at later times in the expansion

of the universe has to be explained.

cNote that there will be a fraction of dark baryonic matter before decoupling.



September 13, 2018 8:35 WSPC/INSTRUCTION FILE nasavirgproc5

A modified gravity and its consequences for the solar system, astrophysics and cosmology 15

We have succeeded in fitting in a unified picture a large amount of data over 16

orders of magnitude in distance scale from Earth to the surface of last scattering

some 13.7 billion years ago, using our modified gravitational theory without exotic

dark matter. The data fitting ranges over four distance scales: the solar system,

galaxies, clusters of galaxies and the CMB power spectrum data at the surface of

last scattering.
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