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Abstract

The claim that the large scale structure of the Universe is heirarchical has a very long
history going back at least to Charlier’s papers of the early 20th century. In recent years,
the debate has centered largely on the works of Sylos Labini, Joyce, Pietronero and oth-
ers, who have made the quantative claim that the large scale structure of the Universe is
quasi-fractal with fractal dimension D ≈ 2. There is now a concensus that this is the case
on medium scales, with the main debate revolving around what happens on the scales of
the largest available modern surveys.

This paper, which is a realization of a worldview which is deeply rooted in the ideas of
Leibniz & Mach shows, as a very special case of a general formalism, that such a fractal
D ≈ 2 world, which we denote as U0 world, is necessarily a world of dynamical equilibrium:
that is, it is a flat world. Whilst we confine ourselves here to discussing cosmology on the
medium scale (that is, U0 world), the general nature of the derived formalism allows ready
specializations to the small-scale world of Newtonian gravitational physics and to the world
of very large scale gravitational physics.

To illustrate the utility of the general approach, we derive a simple disc-galaxy model
and show how the Tully-Fisher relation and Freeman’s Law arise in a very closely related
way from a special case of the model.
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1 Introduction:

In modern terms, for Leibniz, space is a secondary construct projected out of primary relation-
ships between objects (whatever these might be) whilst time (for Leibniz and Mach) stands as
no more than a metaphor for process or ordered change within material systems. One might rea-
sonably refer to any cosmological synthesis based upon these ideas as a Leibniz-Mach cosmology.

In the debate of Clarke-Leibniz (1715∼1716) (Alexander (1984)) concerning the nature of space,
and in which Clarke argued for Newton’s conception of an absolute space, Leibniz made three
arguments of which the second was:

Motion and position are real and detectable only in relation to other objects ... there-
fore empty space, a void, and so space itself is an unnecessary hypothesis.

Of Leibniz’s three arguments, this latter was the only one to which Clarke had a good objection
- essentially that accelerated motion, unlike uniform motion, can be perceived without reference
to external bodies and is therefore, he argued, necessarily perceived with respect to the absolute
space of Newton. Given Clarke’s objection, which was pertinent, and whatever Leibniz’s actual
intention, it is clear that the world implicit to his argument above is a world of dynamical
equilibrium (motion everywhere uniform) - otherwise Clarke’s objection must stand. So, Leibniz’s
implied equilibrium state leads us to consider whether or not such a thing can actually exist,
and hence we are led to that which we nominate as The Leibniz Question:

Is it possible to conceive a non-trivial global mass distribution, isotropic about ev-
ery spatial origin, which is in a state of dynamical equilibrium (motion everywhere
uniform) and, if so, what are the properties of this distribution?

Certainly, Mach himself would have answered yes to this question identifying the global mass
distribution concerned with the distribution of ‘fixed stars’, for he famously said

... I have remained to the present day the only one who insists upon referring the
law of inertia (Newton’s First Law) to the earth and, in the case of motions of great
spatial and temporal extent, to the fixed stars ... Mach (1919)

where here, he is talking not of that which accelerates a particle (a force), but rather of that
which makes a particle resistant to such an acceleration (its inertia). Notwithstanding Mach’s
views on the subject, it is the case that within the world of Newton’s Universal Gravitation in
which all masses attract all other masses, or within the world of Einstein’s spacetime continuum
curving in response to a non-trivial mass-energy content, the answer to The Leibniz Question
question is quite simply no.

But we must consider the fact that, in a global context, thermodynamic and dynamic equi-
librium are two sides of the same coin and that, in the CBR, we actually see physical evidence
of some degree of global thermodynamic equilibrium which should entail a corresponding de-
gree of dynamic equilibrium. So, if the world we observe really is ordered in the manner of
the Leibniz-Mach analysis then, given the consistent synthesis of a Leibniz-Mach cosmology, we
should expect such a cosmology to yield the answer yes in response to the The Leibniz Question,
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together with a description of the associated matter distribution.

The core analysis of this paper, which was motivated by the The Leibniz Question, synthe-
sizes such a Leibniz-Mach cosmology and provides the answer yes to the question, describing
the non-trivial matter distribution concerned as being fractal, D = 2. This is entirely consistent
with the modern concensus that, on medium cosmological scales at least, material is distributed
quasi-fractally, D ≈ 2, and that on these scales dynamical equilibrium appears to be the dom-
inant state1. In recognition of these latter circumstances, we begin with a brief review of the
large-scale structure observations and the debate surrounding them.

2 Medium to large scale structure

A basic assumption of the Standard Model of modern cosmology is that, on some scale, the
universe is homogeneous; however, in early responses to suspicions that the accruing data was
more consistent with Charlier’s conceptions Charlier (1908, 1922, 1924) of an hierarchical universe
than with the requirements of the Standard Model, De Vaucouleurs (1970) showed that, within
wide limits, the available data satisfied a mass distribution law M ≈ r1.3, whilst Peebles (1980)
found M ≈ r1.23.

2.1 Modern observations and the debate

The situation, from the point of view of the Standard Model, continued to deteriorate with the
growth of the data-base to the point that, Baryshev et al (1995) were able to say

...the scale of the largest inhomogeneities (discovered to date) is comparable with the
extent of the surveys, so that the largest known structures are limited by the boundaries
of the survey in which they are detected.

For example, several redshift surveys of the late 20th century, such as those performed by
Huchra et al (1983), Giovanelli and Haynes (1986), De Lapparent et al (1988), Broadhurst et al
(1990), Da Costa et al (1994) and Vettolani et al (1993) etc discovered massive structures such
as sheets, filaments, superclusters and voids, and showed that large structures are common fea-
tures of the observable universe; the most significant conclusion drawn from all of these surveys
was that the scale of the largest inhomogeneities observed in the samples was comparable with
the spatial extent of those surveys themselves.

In the closing years of the century, several quantitative analyses of both pencil-beam and wide-
angle surveys of galaxy distributions were performed: three examples are given by Joyce, Montuori & Sylos Labini et al
(1999) who analysed the CfA2-South catalogue to find fractal behaviour with D=1.9 ± 0.1;
Sylos Labini & Montuori (1998) analysed the APM-Stromlo survey to find fractal behaviour with
D=2.1±0.1, whilst Sylos Labini, Montuori & Pietronero (1998) analysed the Perseus-Pisces sur-
vey to find fractal behaviour with D=2.0 ± 0.1. There are many other papers of this nature,
and of the same period, in the literature all supporting the view that, out to 30 − 40h−1Mpc
at least, galaxy distributions appeared to be consistent with the simple stochastic fractal model

1density parameter estimates suggest that our Universe is at least very close to being flat, if not actually flat.
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with the critical fractal dimension of D ≈ Dcrit = 2.

This latter view became widely accepted (for example, see Wu, Lahav & Rees (1999)), and the
open question became whether or not there was transition to homogeneity on some sufficiently
large scale. For example, Scaramella et al (1998) analyse the ESO Slice Project redshift survey,
whilst Martinez et al (1998) analyse the Perseus-Pisces, the APM-Stromlo and the 1.2-Jy IRAS
redshift surveys, with both groups claiming to find evidence for a cross-over to homogeneity at
large scales.

At around about this time, the argument reduced to a question of statistics (Labini & Gabrielli
(2000), Gabrielli & Sylos Labini (2001), Pietronero & Sylos Labini (2000)): basically, the propo-
nents of the fractal view began to argue that the statistical tools (that is, two-point correlation
function methods) widely used to analyse galaxy distributions by the proponents of the opposite
view are deeply rooted in classical ideas of statistics and implicitly assume that the distributions
from which samples are drawn are homogeneous in the first place. Hogg et al (2005), having ac-
cepted these arguments, applied the techniques argued for by the pro-fractal community (which
use the conditional density as an appropriate statistic) to a sample drawn from Release Four of
the Sloan Digital Sky Survey. They claimed that the application of these methods does show a
turnover to homogeneity at the largest scales thereby closing, as they see it, the argument. In
response, Sylos Labini, Vasilyev & Baryshev (2006) criticized their paper on the basis that the
strength of the conclusions drawn is unwarrented given the deficencies of the sample - in effect,
that it is not big enough. More recently, Tekhanovich & Baryshev (2016) have addressed the
deficencies of the Hogg et al analysis by analysing the 2MRS catalogue, which provides redshifts
of over 43,000 objects out to about 300Mpc, using conditional density methods; their analy-
sis shows that the distribution of objects in the 2MRS catalogue is consistent with the simple
stochastic fractal model with the critical fractal dimension of D ≈ Dcrit = 2.

To summarize, the proponents of non-trivially fractal large-scale structure have won the ar-
gument out to medium distances and the controversy now revolves around the largest scales
encompassed by the SDSS.

2.2 U0 world: an equilibrium world on the medium cosmological scale

As the discussion of §2.1 makes clear, it is now generally accepted that, on what might be referred
to as the medium scale, the amount of mass within an arbitrarily drawn sphere of radius R varies
(in a statistical sense) fractally, D ≈ 2. That is, defining ρ0 as a surface mass density parameter
then, about any centre, mass is distributed (in a statistical sense) according to

M(R) = 4πρ0R
2. (1)

At face value, it seems counter-intuitive that matter could or should be distributed in such a
way. However, there is a sense in which any distribution of material which is in thermodynamic
equilibrium must be so distributed: specifically, since (1) is valid about any centre then, on the
surface of any sphere drawn in the fractal distribution, the mass surface density is the fixed
constant, ρ0 > 0. But the mass surface density on any spherical surface enclosing a volume
is directly related to the radiation pressure arising from the radiative activity of any enclosed
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material. Thus, if one imagines two distinct spheres in U0 world just touching at a single point,
then the net radiation pressure acting across the two surfaces at the point is zero.

In other words, a system organized according to (1) is in radiative/thermodynamic equilibrium.
In this way, it is easy to see how, given the freedom, a distribution of material will self-organize
according to (1). The conclusions drawn from this simple thermodynamic argument are entirely
consistent with (and complementary to) a primary result of this paper - that a world of dynamical
equilibrium is necessarily associated with a fractal D = 2 distribution of material.

3 A brief history of ideas of space and time

The conception of space as the container of material objects is generally considered to have
originated with Democritus and, for him, it provided the stage upon which material things play
out their existence - emptiness exists and is that which is devoid of the attribute of extendedness
(although, interestingly, this latter conception seems to contain elements of the opposite view
upon which we shall comment later). For Newton (1687), an extension of the Democritian
conception was basic to his mechanics and, for him:

... absolute space, by its own nature and irrespective of anything external, always
remains immovable and similar to itself.

Thus, the absolute space of Newton was, like that of Democritus, the stage upon which material
things play out their existence - it had an objective existence for Newton and was primary to
the order of things. In a similar way, time - universal time, an absolute time which is the same
everywhere - was also considered to possess an objective existence, independently of space and
independently of all the things contained within space. The fusion of these two conceptions
provided Newton with the reference system - spatial coordinates defined at a particular time - by
means of which, as Newton saw it, all motions could be quantified in a way which was completely
independent of the objects concerned. It is in this latter sense that the Newtonian conception
seems to depart fundamentally from that of Democritus - if emptiness exists and is devoid of
the attribute of extendedness then, in modern terms, the emptiness of Democritus can have no
metric associated with it. But it is precisely Newton’s belief in absolute space & time (with the
implied virtual clocks and rods) that makes the Newtonian conception a direct antecedent of
Minkowski spacetime - that is, of an empty space and time within which it is possible to have
an internally consistent discussion of the notion of metric.

The contrary view is generally considered to have originated with Aristotle (Wicksteed & Cornford
(1929) and McKeon (1941)) for whom there was no such thing as a void - there was only the
plenum within which the concept of the empty place was meaningless and, in this, Aristotle and
Leibniz (Ariew & Garber (1989)) were at one. It fell to Leibniz, however, to take a crucial step
beyond the Aristotelian conception: in the debate of Clarke-Leibniz (1715∼1716) (Alexander
(1984)) in which Clarke argued for Newton’s conception, Leibniz made three arguments of which
the second was:

Motion and position are real and detectable only in relation to other objects ... there-
fore empty space, a void, and so space itself is an unnecessary hypothesis.
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That is, Leibniz introduced a relational concept into the Aristotelian worldview - what we call
space is a projection of relationships between material bodies (whatever these might be) into
the perceived world whilst what we call time, which is implied by the idea of motion, is the
projection of ordered change into the perceived world. Of Leibniz’s three arguments, this latter
was the only one to which Clarke had a good objection - essentially that accelerated motion,
unlike uniform motion, can be perceived without reference to external bodies and is therefore,
he argued, necessarily perceived with respect to the absolute space of Newton. It is of interest
to note, however, that in rebutting this particular argument of Leibniz, Clarke, in the last
letter of the correspondence (Alexander (1984)), put his finger directly upon one of the crucial
consequences of a relational theory which Leibniz had apparently not realized (but which Mach
much later would) stating as absurd that:

... the parts of a circulating body (suppose the sun) would lose the vis centrifuga
arising from their circular motion if all the extrinsic matter around them were anni-
hilated.

This letter was sent on October 29th 1716 and Leibniz died on November 14th 1716 so that we
were never to know what Leibniz’s response might have been.

Notwithstanding Leibniz’s arguments against the Newtonian conception, nor Berkeley’s con-
temporary criticisms (Ayers (1992)), which were very similar to those of Leibniz and are the
direct antecedents of Mach’s, the practical success of the Newtonian prescription subdued any
serious interest in the matter for the next 150 years or so until Mach himself picked up the torch.
In effect, he answered Clarke’s response to Leibniz’s second argument by suggesting that the
inertia of bodies is somehow induced within them by the large-scale distribution of material in
the universe:

... I have remained to the present day the only one who insists upon referring the
law of inertia to the earth and, in the case of motions of great spatial and temporal
extent, to the fixed stars ... Mach (1919)

thereby generalizing Leibniz’s conception of a relational universe.

4 Concepts of “time” in the Leibniz-Mach perspective

Mach (1919) was equally clear in expressing his views about the nature of time which are, in
effect, very similar to those expressed by Leibniz. They each viewed time (specifically Newton’s
absolute time) as a meaningless abstraction. All that we can ever do, Mach argued, is to mea-
sure change within one system against change in a second system which has been defined as the
standard (eg it takes half of one complete rotation of the earth about its own axis to walk thirty
miles). So, on this Machian view, the ‘clock’ used to quantify the passage of time for a physical
system A is simply an independent physical system B which has been arbitrarily defined as the
standard clock.

There are two implications arising from this point of view:
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• It implicitly identifies one of the requirements of practical time-keeping, that it must be
shareable between different observers. So, we have sun dials and we have atomic clocks;

• It similarly implies that, for such shared time-keeping to be possible, system A must, in
principle, be equally able to act as the standard clock for system B as the other way around.
It is, of course, desirable that we can say of a standard clock that it ticks at a regular rate;
but if we possessed only two (different) clocks, then the statement that clock A is more
regular than clock B is merely a matter of convention, rather than an absolute fact.

It follows, from the second of these points, that all physical systems must keep their own inter-
nal time which is uncalibrated against any external clock. Thus, for example, each one of us is
aware of a subjective (albeit qualitative) passage of time; so, imagine one is confined within a
darkened room then, without being at all aware of how many hours have passed, we are aware,
nevertheless, that time has passed and the mechanism is simply our innate awareness of changes
in our internal physical state ... we become hungry, we become tired, a tooth ache comes and a
tooth ache goes. These processes cannot form the basis of any objective quantitative, regular,
shareable time-keeping process but, nonetheless, they indicate that the passage of time is also
intrinsic to the internal workings of a system. So, in answer to the question how long does is
take to walk thirty miles? a person could correctly answer, using their innate sense of time, that
it takes ”walking thirty miles” worth of time.

It follows from the foregoing considerations that any definition of time based upon the Machian
argument must be based upon the ideas of:

• every physical system having its own subjective and private internal time-keeping, any one
of which can be chosen as the standard clock against which all the other systems reckon
the passage of time;

• in practice, one such system being chosen as the standard clock, the choice being merely
one of convention usually involving a natural cyclic process.

5 Metrical three-space as a relational property

Whilst Mach was clear about the origins of inertia (in the fixed stars), he did not hypothesize
any mechanism by which this conviction might be realized and it fell to others to make the
attempt - a typical (although very much incomplete) list might include the names of Einstein
(1952), Sciama (1953), Hoyle & Narlikar (1964) and Sachs (1982, 1986) for approaches based on
canonical ideas of spacetime, and the names of Assis (1999) and Ghosh (2000) for approaches
based on quasi-Newtonian ideas, or Barbour (1982), Barbour & Bertotti (1982) for approaches
which are deeply rooted in the contemporary discourse of the foundations of physics.

It is perhaps one of the great ironies of 20thC science that Einstein, having coined the name
Mach’s Principle for Mach’s original suggestion and setting out to find a theory which satisfied
the newly named Principle, should end up with a theory which, whilst albeit enormously suc-
cessful, is arguably more an heir to the ideas of Democritus and Newton than to the ideas of
Aristotle and Leibniz. One only has to consider the special case solution of Minkowski spacetime,
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which is empty but metrical, to appreciate this fact.

In this paper we do not set out to construct a theory which focuses on some fixed interpre-
tation of what Mach’s Principle might mean in the way that some of the authors referred to
above have. Rather, we look further back and take the general position of Leibniz about the
relational nature of space to be our self-evident starting point and consider the question of spa-
tial metric within this general conceptualization - that is, how is the notion of invariant spatial
distance to be defined in the Leibniz-Mach particle universe?

To answer this latter question, we begin by considering the universe of our actual experience
and show how it is possible to define an invariant measure for the radius of a statistically defined
astrophysical sphere purely in terms of the amount of mass it contains (to within a calibration
exercise); we then show how the arguments deployed can be extended to define an invariant mea-
sure for an arbitrary spatial displacement within the statistically defined astrophysical sphere.
In this way, we arrive at a general formalism (for which spherical volumes are just a special case)
within which a metrical three-space is projected as a secondary construct entirely out of the
internal relationships within the primary distribution of universal material.

The question of how time arises within this formalism is particularly interesting: the simple
requirement that time should be defined in such a way that the formalism is conservative has the
direct consequence that time becomes an explicit measure of ordered change within the system,
and is therefore a measure of internal time very much as anticipated by Mach’s arguments and
discussed here in §4.

The overall result is a general all-scales Leibniz-Mach cosmology. We demonstrate its appli-
cation here on the medium scale, where we find that conditions of dynamical equilibrium are
irreducibly associated with a fractal D = 2 distribution of material, thereby answering The Leib-
niz Question which refers to the world that Leibniz was effectively considering in his debate with
Clarke of 1715∼1716.

5.1 The general argument

Following in the tradition of Aristotle, Leibniz, Berkeley and Mach we argue that no consistent
cosmology should admit the possibility of an internally consistent discussion of empty met-
rical space & time - unlike, for example, General Relativity which has the empty spacetime of
Minkowski as a particular solution. In this way, we are implicitly accepting Leibniz’s view of space
as a secondary construct somehow projected out of the relationships between ‘objects’, whatever
they might be, and the shared view of Leibniz and Mach that time is merely a metaphor for
process or ordered change within material systems. In essence, therefore, the following synthesis
provides a quantitative Leibniz-Mach cosmology within which:

• all metric spatial structure is projected entirely out of the internal relationships within the
primary material systems, and without reference to any external source or assumptions;

• the notion of the ‘elapsed time’ is no more and no less than an idealized model for ordered
change within the primary material system;
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• all concepts of spatial displacement and elapsed time dissolve in the absence of the material
system.

So, recognizing that the most simple space & time to visualize is one which is everywhere inertial
- in fact the world that Leibniz had in mind in his discussions with Clarke - then our worldview
is distilled into The Leibniz Question:

Is it possible to conceive a non-trivial global mass distribution, isotropic about ev-
ery spatial origin, which is in a state of dynamical equilibrium (motion everywhere
uniform) and, if so, what are the properties of this distribution?

In pursuit of this question, we shall assume an idealized model universe which is intended to
capture what we see as the irreducible features of the our actual universe. And so:

• it consists of an indefinite number of discrete but identical primitive particles which possess
an ordering property which allows us to say that particle P0 is nearer/further than particle
P1. The redshift properties of galaxies in the real universe are an example of such an
ordering property;

• within it, ‘time’ is to be understood, in a qualitative way, as a measure of process or
ordered change;

• within it, the distribution of material particles is statistically isotropic about any point on
a sufficiently large scale and over sufficiently large periods of ‘time’.

Note that, although the idea of space is implicit in this model, it is not assumed to be a funda-
mental primary construct which exists independently of the material content.

It is useful to discuss, briefly, the notion of spherical volumes defined on large astrophysical
scales in the universe of our experience. Whilst use of such spherical volumes allows for rela-
tively simple arguments, the resulting formalism is general and not restricted to these purely
spherical volumes. So, whilst we can certainly give various precise operational definitions of
spherical volumes on small scales, the process of giving such definitions on large scales is de-
cidedly ambiguous. In effect, we have to suppose that redshift measurements are (statistically)
isotropic when taken from an arbitrary point within the universe and that they vary monotoni-
cally with distance on the large scales we are concerned with. With these assumptions, spherical
volumes can be defined (statistically) in terms of redshift measurements - however, their radial
calibration in terms of ordinary units (such as metres) becomes increasingly uncertain (and even
unknown) on very large redshift scales.

5.2 Astrophysical spheres and a mass-calibrated metric

for radial displacements

With the foregoing ideas in mind, the primary step taken in answer to the The Leibniz Question
is the recognition that, on large enough scales in the universe of our experience, the amount
of matter, m say, in a given redshift-defined spherical volume will be given by a well-defined
monotonic function of the sphere’s redshift radius, z. It follows immediately that a generalized

10



radius for any redshift defined astrophysical sphere can be defined in terms of the sphere’s
contained mass according to:

R = G(m) (2)

where m is the mass concerned and G is a monotonic increasing function of m satisfying only
the condition G(0) = 0. Thus, whatever the form of G chosen, we have defined an invariant mea-
surement for the (generalized) radius of an astrophysical sphere which vanishes in the absence of
matter.

It follows immediately that an invariant measure of an arbitrary radial displacement can be
written, purely in terms of mass, as

∆R = G(m+∆m)−G(m) (3)

so that, whatever the form of G chosen, we have a metric which follows Leibniz in the required
sense (that ‘space’ is a secondary construct projected out of a ‘matter’ distribution) for any
displacement which is purely radial.

The question now becomes: how can we generalize this idea of a mass-defined invariant measure
for a radial displacement into a mass-defined invariant measure for an arbitrary displacement?
In pursuit of this question, we find it useful to consider primitive human experience.

5.3 Qualitative assessments of ‘distance traversed’ in life

It is instructive to reflect briefly upon how we, as primitive human beings, form qualitative as-
sessments of ‘distance traversed’ in our everyday lives without recourse to formal instruments.

In effect, as we travel through a physical environment, we use our changing perspective of the ob-
served scene in a given ‘elapsed time’ to provide a qualitative assessment of ‘distance traversed’ in
that ‘elapsed time’. So, briefly, when walking across a tree-dotted landscape, the changing angu-
lar relationships between ourselves and the trees provides the information required to assess both
distance traversed and which tree nearer? which tree further?, measured in units of human-to-tree
angular displacements, within that landscape. If we remove the perspective information - by, for
example, obliterating the scene with dense fog - then all sense of ‘distance traversed’ is destroyed.

So, in making our primitive assessments of distance traversed and which tree nearer? which tree
further?, the primary information required is the concomitant change in the angular relationships
between ourselves and everything else in that landscape arising from a spatial displacement.

5.4 The mass model, and its generalization from the sphere

Before we can usefully apply the insights of §5.3, we need to define exactly what object is to be
our ‘tree dotted landscape’: to this end, we consider (2), R = G(m), to be absolutely primary
and then invert it to give (as a secondary construct) the derived mass model,

Mass ≡ m = M(R), (4)
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for our rudimentary universe. It is this object which we take to represent our ‘tree dotted
landscape’. Note that:

• by (2), R vanishes in the case of the rudimentary universe being empty;

• R only becomes calibrated when G becomes defined;

• since G(0) = 0 does not imply M(0) = 0, then we can retain the freedom for

M(0) = M0 ≥ 0 (5)

so that any given point in the space may, or may not, have an elemental mass (a point-
source) situated at it.

In explicit recognition that a 3-space continuum is being admitted, we write (4) as

m ≡ M(R), R ≡ f(x1, x2, x3)

where R is (as yet) uncalibrated, and we assume nothing about the spatial coordinates, (x1, x2, x3).

Note that, although up to this point, R = constant has been interpreted as a spherical surface
for ease of discussion, it can, in fact, represent any convex astrophysical surface; for example, an
ellipsoid to model an elliptical galaxy; or a cylinder, a slice of which might be taken as a prim-
itive model for a spiral galaxy etc. In this broader context, equation (3) (originally interpreted
to define the idea of a mass-calibrated radial displacement) is generalized so that it defines a
mass-calibrated displacement normal to the level surface R = constant.

5.5 A mass-calibrated metric for arbitrary spatial displacements

We have a way of assigning a mass-calibrated metric for displacements which are purely normal
to the level surface R = constant (of which the sphere is a special case) in our model universe.
We now need a way of assigning a mass-calibrated metric for arbitrary displacements within that
universe. The reflections of §5.3 on how we, as primitive observers in a landscape, manage this
without recourse to formal instruments inform our approach to the problem.

Since we are taking the mass-model m ≡ M(R) to represent the observed landscape of §5.3,
then the normal gradient vector

na = ∇aM

(which does not require any metric stucture for its definition) represents our perspective upon
that landscape - it contains direct angular information and basic information about the local
distribution of material along the uncalibrated ‘line of sight’ normal vector.

Within the primitive human landscape, it was the change in perspective arising from the act
of an observer-displacement that produced the information required to assess both distance tra-
versed and which tree nearer? which tree further?. In the case of our simple model, the change
in na (the perspective) arising from a displacement dxk can be formally expressed as

dna =
1

8πρ0
∇i (∇aM) dxi , (6)
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where:

• ρ0 is a characteristic mass surface density inserted to ensure that the dimensions of dna are
the same as those of dxa;

• the factor 8π is included for book-keeping purposes;

• we assume that the connection required to give this latter expression an unambiguous
meaning is the usual Levi-Civita connection - except of course, the metric tensor gab required
to define that connection in our Leibniz-Mach three-space is not yet defined.

Now, since gab is not yet defined, then the covariant counterpart of dxa, given by dxa = gaidx
i,

is also not yet defined. However, providing that ∇a∇bM is nonsingular, then (6) provides a
1:1 mapping between the contravariant vector dxa and the covariant vector dna so that, in the
absence of any other definition, we can define dna to be the covariant form of dxa. In this latter
case the metric tensor of our Leibniz-Mach three-space automatically becomes

gab ≡
1

8πρ0
∇a∇bM ≡ 1

8πρ0

(

∂2M

∂xa∂xb
− Γk

ab

∂M

∂xk

)

, (7)

where Γk
ab are the Christoffel symbols, and given by

Γk
ab =

1

2
gkj
(

∂gbj
∂xa

+
∂gja
∂xb

− ∂gab
∂xj

)

.

In this way, we arrive at a set of non-linear differential equations defining gab in terms of the
unspecified mass function, M(R). The scalar product

ds2 ≡ dnidx
i ≡ gijdx

idxj (8)

then provides the required invariant measure for the magnitude of an arbitrary infinitesimal
displacement, dxa, in our Leibniz-Mach three-space.

Comment 1

The crucial point of contact here with Leibniz’s view of space as a secondary construct projected
out of the relationships between ‘objects’ is simply this: the metric structure of the Leibniz-
Mach three-space is defined entirely in terms of the internal properties of the primary material
system, represented by M(R), without reference to anything external; and if Leibniz-Mach world
is empty, that is if M ≡ 0, then the metric structure of the Leibniz-Mach three-space becomes
wholly undefined.

Comment 2

Consider Mach’s statement:

... I have remained to the present day the only one who insists upon referring the
law of inertia to the earth and, in the case of motions of great spatial and temporal
extent, to the fixed stars ... Mach (1919)
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Given that the ‘fixed stars’ here find their representation in M(R), then there is an obvious
element of this latter statement in (7) above. However, any discussion of The Law of Inertia
(Newton’s First Law) requires a concept of temporal evolution, which has yet to be incorporated
here. Once it has been so incoprorated, then we can imagine that Mach’s statement, above, will
find some form of quantitative expression in the present discussion.

6 The metric in terms of the mass function

for the spherical special case

We have so far made no assumptions about the nature of the coordinate system (x1, x2, x3). So:

• we suppose that each of (x1, x2, x3) is calibrated in the same units as R;

• noting that cosmic density parameter estimates suggest that, on very large scales, the
Universe is at the very least very close to being flat, we make the modelling assumption
that it is, in fact, flat so that we can assume the usual Pythagorean relationship,

R2 =
(

x1
)2

+
(

x2
)2

+
(

x3
)2

so that the level surfaces, R = constant in the model universe are assumed to be spherical.

With this understanding, it is shown, in appendix A, how, for an arbitrarily defined model of
mass, M(R), (7) can be exactly resolved to give an explicit form for gab in terms of such a general
M(R): defining the notation

R ≡ (x1, x2, x3), and M ′ ≡ dM

dR
,

this explicit form of gab is given as

gab =
1

8πρ0

(

Aδab +Bxixjδiaδjb
)

, (9)

where

A ≡ 2d0 (M −M0)

R2
,

B ≡ − 1

2R2

(

4d0 (M −M0)

R2
− (M −M0)

′ (M −M0)
′

(M −M0)

)

,

where M0 ≡ M(0) and d0 is a dimensionless constant of integration. As will eventually become
apparent, this constant has a fundamental role to play in the larger Leibniz-Mach worldview.

Finally, noting that mass in the above definitions for A and B always appears in the form
of M −M0 then we express the formalism exclusively in terms of

M(R) ≡ M −M0 (10)
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where, by definition, M(0) = 0, and we refer to M(R) as the active mass of the Leibniz-Mach
worldview. So, in terms of this active mass, A and B are defined as:

A ≡ 2d0M
R2

, (11)

B ≡ − 1

2R2

(

4d0M
R2

− M′M′

M

)

, M(0) = 0.

The condition M(0) = 0 has the effect that every point in the Leibniz-Mach three-space is
equivalent irrespective of whether or not a point-source mass is situated at the point concerned.
In other words, M(R) is always independent of any point-source mass, wherever it might be
situated.

With the foregoing definitions, (9) becomes

ds2 ≡ 1

4πρ0

[

d0M
R2

dxidxjδij −
(

d0M
R2

− M′M′

4M

)

dR2

]

, (12)

where, from (2), we remember that since R = G(M) for an undefined monotonic function G,
then R and hence M(R) are completely uncalibrated.

7 The temporal dimension

So far, the concept of ‘time’ has only entered the discussion in a qualitative way in §4 - it has not
entered in any quantitative way and, until it does, we cannot talk of velocities or accelerations
or of equations of motion ... and hence cannot talk of kinematics or dynamics within U0 world.
In this section, we develop a quantitative definition of time & temporal process in U0 world.

Since, in its most general definition, time is a parameter which orders change within a sys-
tem, then a necessary pre-requisite for its quantitative definition is a notion of change within
the model universe. The most simple notion of change which can be defined in this universe is
that of changing relative spatial displacements of the objects within it. Since this universe is
populated solely by primitive particles which possess only the property of discrete identity (and
hence quantification in terms of the amount of material present) then, in effect, all change can
be described as “gravitational” change. In existing classical theories, this fact is incorporated by
constraining all particle motions to satisfy the Weak Equivalence Principle. However, this option
is not available in the present case, since the WEP is a dynamical principle requiring a prior
quantitative definition of “time” and such a definition is still unformulated here.

This latter problem is avoided by formulating a modified version of the WEP which notes that
the geometric shapes of gravitational trajectories in ordinary physical space are themselves in-
dependent of the internal properties of the particles concerned. So we arrive at the constraint:

C1 When a massive test-particle moves under the influence of a gravitating source,
the shape of that particle’s trajectory in ordinary geometric three-space is independent
of the intrinsic properties of the particle concerned;

15



7.1 Equations of motion

Suppose p and q are two arbitrarily chosen point coordinates on the trajectory of the chosen
particle, and suppose that (8) is used to give the scalar invariant

I(p, q) =

∫ q

p

√

dnidxi ≡
∫ q

p

√

gijdxidxj. (13)

Then, I(p, q) gives a scalar record of how the particle has moved between p and q defined with
respect to the particle’s continually changing relationship with the mass model, M(R).

Now suppose I(p, q) is minimized with respect to choice of the trajectory connecting p and
q, then this minimizing trajectory, and in particular it’s shape, is independent of the internal
properties of the particle concerned so that constraint C1 is satisfied.

So, defining the Lagrangian density in the usual way, and using (12), we have

I(p, q) =

∫ q

p

L dt ≡
∫ q

p

√

gij ẋiẋj dt

=

(

1√
8πρ0

)
∫ q

p

(

A Ṙ · Ṙ+BR2Ṙ2

)1/2

dt, (14)

where A ≡ 2 d0M
R2

, B ≡ − 1

2R2

(

4 d0M
R2

− M′M′

M

)

and t is some temporal ordering parameter. At this stage, we note that I(p, q) is homogeneous
degree zero in t which means that it is invariant under t → f(t) for any monotonic function f .
So:

• firstly, since the system is invariant under t → f(t), then t cannot be identified as physical
time;

• secondly, since the system I(p, q) is homogeneous degree zero in t then, by a standard
result, the Euler-Lagrange equations,

d

dt

(

∂L
∂Ṙ

)

− ∂L
∂R

= 0

d

dt

(

∂L
∂θ̇

)

− ∂L
∂θ

= 0 (15)

d

dt

(

∂L
∂φ̇

)

− ∂L
∂φ

= 0

the solutions of which minimize I(p, q), are not linearly independent. It follows that addi-
tional information is required to close the system. A similar circumstance arises in General
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Relativity when the equations of motion are derived from an action integral which is for-
mally identical to (13). In that case, the system is closed by specifying the arbitrary time
parameter to be ‘particle proper time’, so that

dτ = L(xj , dxj) → L(xj,
dxj

dτ
) = 1, (16)

which is then considered as the necessary extra condition required to close the system. In
the present circumstance, an obvious solution presents itself when we have written down
the equations of motion explicitly.

For the sake of simplicity in this work, we shall assume that we remain in the equatorial plane,
φ = π/2, so that the third Euler-Lagrange equation above is redundant. That said, the radial
equation clearly gives rise to two distinct classes of motion: a non-degenerate state class of strictly
non-circular motions, and a degenerate state class of purely circular motions. We consider these
in turn below.

7.2 The non-degenerate state case: non-circular motions

For the non-degenerate state of strictly non-circular motions - that is, the case of circular motions
R = constant being explicitly excluded - the Euler-Lagrange equations can be combined to give
the equations of motion in standard vector form as:

2AR̈+ α Ṙ+ βR = 0, (17)

where

α ≡
(

2A′Ṙ − 2
L̇
LA

)

β ≡
(

B′RṘ2 + 2B
(

Ṙ2 +RR̈
)

− A′

R

(

Ṙ · Ṙ
)

− 2
L̇
LBRṘ

)

.

For the reasons stated in §7.1, this system does not form a linearly independent set, and so needs
additional information to close it. Since this circumstance is intimately linked with the idea that
the temporal parameter in this system cannot be identified with physical time, then the required
additional information must amount to defining physical time for the system.

The way forward is fairly obvious: if we wish the system (17) to be conservative then the
dissipative term must necessarily disappear: that is, the condition

α ≡
(

2A′Ṙ − 2
L̇
LA

)

= 0

must hold. It follows immediately that

A′

A
Ṙ =

L̇
L → L =

v0
8πρ0

A, (18)

where v0 is an undetermined parameter with units of velocity and ρ0 is the characteristic mass
surface density parameter introduced at equation (6), and the factor 8π is introduced for book-
keeping purposes. We shall expand upon the detailed consequences of this in §7.3.
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7.3 Internal clocks for the non-degenerate state case:

The condition (18) is directly analogous to (16), the condition which defines ‘particle proper time’
in General Relativity, and in a similar way removes the arbitrariness in the temporal parameter
of (17) by defining physical time for the system. To make this explicit, then from (18) and (14)
we have

L2 ≡ gijẋ
iẋj =

v20
64π2ρ2

0

A2 (19)

so that the elapsed physical time arising from a spatial displacement as measured by the system’s
internal clock is defined by the relation

dt2 =
def

1

v20

(

64π2ρ2
0

A2

)

gijdx
idxj →

dt2 =
def

1

v2
0

(

8πρ0
A2

)

[

A
(

dR2 +R2dθ2
)

+BR2dR2
]

, (20)

from which we now see that v0, which has dimensions of velocity, is, in fact, a conversion factor
between units of distance and units of time, which is precisely the interpretation that Bondi
attached to the light-speed constant, c, in the 1960s. We shall refer to v0 as the clock-rate pa-
rameter and, for now, leave its value unassigned.

In any event, according to the above, the elapsing of internal time for the system concerned
is given a direct physical interpretation in terms of the process of spatial displacement within
that system. Thus, just as we have shown that“metrical space” can be considered to be projected
out of the relationships within the material world, so “elapsed system time” can be considered to
be projected out of “process” within that world, which conforms exactly with the Leibniz-Mach
view on the nature of “time” expressed in §4.

With this understanding, (20) can be written as

Ṙ2 +R2θ̇2 =
v2
0

8πρ0
A− B

A
R2Ṙ2. (21)

Following the algebra of §C which eliminates the right-hand-side time derivative, we find:

Ṙ2 +R2θ̇2 = 4 d2
0
v2
0

(

M
4πρ0

− h2

d0v
2
0

)(

M2

R4M′M′

)

+
h2

R2
(22)

where h is conserved angular momentum. This latter relationship, being a restatement of (20),
is effectively the definition of physical time for the system concerned and is therefore most easily
considered as a constraint that must be satisfied by any solution of the completed equations of
motion, considered below.

Comment

Again, we recollect that so far R and M(R) are completely uncalibrated, so the above definition
of physical time only becomes specific when that calibration is completed.
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7.4 The degenerate state case: circular motions

For this case, the radial equation of (15) is trivially integrated to give:

L2 = v2
0

→ R2θ̇2 =
8πρ0v

2
0

A
≡ v20

d0

(

4πρ0R
2

M

)

(23)

for some constant v0 > 0 having dimensions of velocity. The transverse equation of motion
gives angular momentum conservation, trivially. Note that this system is not invariant under
t → f(t), and so the temporal parameter within it must already correspond to physical time.
All this really means is that systems in states of pure circular motion are, by definition, already
acting as perfect standard clocks.

8 Every particle is an angular momentum preserving clock

In the following, we show that the total independent content of the completed equations of
motion (that is, equation (17) with α = 0) arising from the non-degenerate state case is:

• equation (20) which defines elapsed physical time in terms of the process of spatial dis-
placement,

• a statement of the conservation of angular momentum,

from which it follows that every particle in the ensemble of particles represented by the active
mass function, M(R), is no more and no less than an angular momentum preserving clock. Since
all particles in this ensemble are equivalent, we shall refer to each such clock as a system clock.

We demonstrate this as follows: referring to (22) as the Clock constraint, the completed equations
of motion arising from the non-degenerate state case are given by:

2AR̈+ βR = 0 (24)

where

β ≡
(

B′RṘ2 + 2B
(

Ṙ2 +RR̈
)

− A′

R

(

Ṙ · Ṙ
)

− 2
A′

A
BRṘ2

)

R

Clock constraint

Ṙ2 +R2θ̇2 = 4 d2
0
v2
0

(

M
4πρ0

− h2

d0v
2
0

)(

M2

R4M′M′

)

+
h2

R2
,

and where A and B are defined at (11). Following appendix §B, in an analysis which makes
explicit use of the condition R 6= constant, we find that this latter system can be written in
potential form as

R̈ = −dV
dR

R̂, (25)
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V = −1

2

[

4 d2
0
v2
0

(

M
4πρ0

− h2

d0v20

)(

M2

R4M′M′

)

+
h2

R2

]

Clock constraint:

1

2

(

Ṙ2 +R2θ̇2
)

= −V

from which it is clear that the Clock constraint is, in fact, simply the first integral with respect
to t of (25) with the condition that the constant of integration which arises from this process is
explicitly set to zero.

Since angular momentum is trivially conserved by (25), it follows immediately that the total
independent content of these equations is, as stated, an equation (the Clock constraint which
is equivalent to (20)) defining elapsed physical time in terms of process or change and angular
momentum conservation. In this way, the proposition, that every particle in the ensemble is a
system clock is demonstrated.

Comment

At face value, the condition that the constant of integration associated with V must be explicitly
set to zero appears to limit the range of solutions available, but this is not the case for the following
reason: the additional degree of freedom which is apparently lost by this latter requirement can
simply be built into the active mass function in the first instance, so that the given form of
the potential function, above, remains invariant. In other words, the active mass function must
necessarily have the structure M ≡ M(R, h, ω), where (h, ω) are orbital parameters which
determine orbits uniquely. In effect, therefore, the active mass function - and hence the potential
function also - becomes a function of dynamical state, containing instructions informing how a
particle in a motional state (h, ω) must ‘see’ the active mass distribution.

8.1 A system clock is synchronous to a classical standard clock

In the following we show, as a trivial mathematical result, that a system clock defined by the
Clock constraint of (25) is entirely equivalent to a classically defined standard clock, with each
exactly synchronized to the other.

The Leibniz-Mach point of view

The Clock constraint of (25) can be simplified and rearranged to define, in the Leibniz-Mach
sense, an elapsed temporal interval in terms of a spatial displacement as:

dt =
def

[

4 d2
0
v2
0

(

M
4πρ0

− h2

d0v
2
0

)(

M2

R4M′M′

)]

−1/2

dR (26)

which, by definition, is also a rearranged form of (20) which defines elapsed time as measured by
the system’s internal clock.
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The classical point of view

From the classical perspective, we interpret the parameter t occurring in the equation of motion
component of (25) as the clock time measured by an external classical clock, ticking off standard
units of time, seconds, minutes, hours etc. The Clock constraint component of (25) is corre-
spondingly re-interpreted as the classical energy equation arising from the first integration of the
equation of motion wrt classical clock-time, and where the arbitrary constant arising from this
process is set identically to zero. This energy equation can now be rearranged to give the spatial
displacement corresponding to a given elapsed classical clock-time interval as:

dR =

[

4 d2
0
v2
0

(

M
4πρ0

− h2

d0v20

)(

M2

R4M′M′

)]1/2

dt. (27)

Note that, unlike (26), this is not a definition but is rather the application of a classical equation
of motion to determine a spatial displacement in terms of a time-interval determined by an
external classical clock.

Conclusions

It is trivially true that (26) and (27) are, in formal terms, simple rearrangements of each other
so that if a given (dR, dt) satisfies either one of these expressions, then it must necessarily satisfy
the other. In other words the Leibniz-Mach system clock is synchronous to any external classical
standard clock used to measure the passage of classical time for the system.

Comment

Whilst this result is mathematically trivial, it is a non-trivial result from the point of view of
physics for it is an exact formal realization of the Leibniz-Mach assertion that the notion of
time passing is no more, and no less, than an idealized model for the process of ordered change
within a material system. From this point of view, classical clock-time (that is, external time)
is an un-necessary abstraction and, arguably, is an idea which has led gravitational physics in
particular into the conceptual cul-de-sac of the spacetime continuum.

8.2 The assignment of value to the clock-rate parameter v0

As soon as we re-interpret (25) as a classical particle equation of motion (as above), then it
becomes clear how the value of the clock-rate parameter, v0, must be assigned: specifically,
when the classical interpretation is employed, the Weak Equivalence Principle (WEP) becomes
applicable, which means that particle accelerations must be independent of any properties that
the particle might possess. It follows that, for any given particle, the value of v0 (which has
units of velocity) must be assigned accordingly. There are then two cases for (25) on the classical
interpretation:

• V 6= constant, so that particle accelerations are non-trivial. The WEP can then only be
satisfied if the parameter v0 is independent of the particle motion. This implies that v0
must be a global constant so that v0 ≡ c is indicated;
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• V = constant, so that particle accelerations are identically zero implying, in turn, that the
WEP imposes no constraints on the parameter v0. However, as we shall show in §9.1, for
this case the Clock constraint becomes

Ṙ2 +R2θ̇2 = v2
0

which, on the classical interpretation of (25), is the particle’s energy equation implying
that v0 must be identified with the velocity magnitude of the particle concerned.

However, whilst the classical interpretation of (25) has indicated how the value of v0 should be
assigned in each of the two situations, we must remember that, within the Leibniz-Mach synthesis,
v0 is the clock-rate parameter which acts as a conversion factor between units of distance and
units of time, and is not a velocity magnitude at all. Thus:

• in the case of V 6= constant for which we have v0 = c, then the light ‘velocity’ parameter c
receives Bondi’s interpretation of the 1960’s;

• in the case of V = constant, it is easily seen that assigning v0 values according to parti-
cle velocity magnitudes on the classical interpretation is equivalent, in the Leibniz-Mach
synthesis, to assigning v0 values according to the condition that all Leibniz-Mach system
clocks are synchronized to tick at the same rate.

9 Specific example: U0 world and the Leibniz Question

According to the discussion of §2.1, we can reasonably suppose that, on the medium cosmological
scale at least, matter is distributed according to

M(R) ≈ 4πρ0R
2 (28)

valid about any centre, so that the Copernican Principle holds - in other words, as a non-space
filling fractal D ≈ 2 distribution. In §2.2, we gave a qualitative argument to the effect that such
a distribution corresponds to a state of thermodynamic equilibrium so that, given the freedom,
it can be expected that any material system will self-organize into such a state. Since, in an ideal
world, thermodynamic equilibrium entails dynamical equilibrium, this suggests that the answer
to The Leibniz Question of §5.1 is yes, and that the mass distribution concerned is given by (28).

However, in practice, of course, we know that the simple statement that mass is distributed
according to (28) (without the verbal qualifying condition ‘valid about any centre’) contains a
hidden degree of freedom which corresponds to the question: what proportion of it is invariant
under rotations and translations (and therefore represents a fractal D = 2 component), and what
proportion of it is invariant only under rotations (and therefore represents a distribution with a
specific center, R = 0)?

So, the immediate question is: if we define M(R) according to (28), how does this degree of
freedom manifest itself in the formalism? To answer this question, consider the general line
element, given from (12) as

ds2 ≡ 1

4πρ0

(

d0M
R2

dxidxjδij −
(

d0M
R2

− M′M′

4M

)

dR2

)
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which, for the active mass function (28), becomes:

ds2 ≡ d0 dx
idxjδij + (1− d0) dR

2. (29)

Since the component d0 dx
idxjδij is invariant under translations and rotations, then it is that

part of the line element which is associated with the fractal component of (28). Thus, we can
conclude that the parameter d0, which first appeared at (9), performs the role of partitioning
(28) according to

M(R) ≡ d0
(

4πρ0R
2
)

FRAC
+ (1− d0)

(

4πρ0R
2
)

ROT
(30)

in an obvious notation. Note that this interpretation of d0 implies the constraint 0 ≤ d0 ≤ 1.

With this understood, we find that using (28) in (25) gives:

R̈ = −dV
dR

R̂, (31)

V = −1

2

[

d2
0
v2
0
+ (1− d0)

h2

R2

]

Clock constraint:

1

2

(

Ṙ2 +R2θ̇2
)

= −V.

It is quite clear that there are two basic cases to consider, these being:

• 0 ≤ d0 < 1 which gives rise to the V 6= constant, v0 = c case considered in §8.2;

• d0 = 1 which gives rise to the V = constant, 0 ≤ v0 ≤ c case also considered in §8.2.

We shall consider the d0 = 1 case in moderate detail below and comment briefly on the d0 < 1
case in §10.

Comment

It is, perhaps, worth noting that the allowed values (above) for the parameter pair (v0, d0) form a
continuum in the (v0, d0) plane, with the consequence that the two distinct cases, V 6= constant
and V = constant merge smoothly through the point (v0, d0) = (c, 1) in the parameter space.

9.1 Case d0 = 1: The Leibniz Question answered

The most simple case occurs when d0 = 1 for which (29) becomes

ds2 ≡ gijdx
idxj = dxidxjδij

and (30) becomes

M(R) ≡
(

4πρ0R
2
)

FRAC
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so that the distribution is purely fractal. We find that (25) gives:

R̈ = 0

V = −v20
2

Clock constraint:

Ṙ2 +R2θ̇2 = v2
0

where, according to the considerations of §8.2, the value of the clock-rate parameter v0 is identified
with the classical particle velocity magnitude. This has the effect of ensuring that all Leibniz-
Mach system clocks (particles on their trajectories in the classical view) tick at the same rate.
Thus, we can say:

• For the particular cases 0 ≤ v0 < c we have finally answered The Leibniz Question and
shown that a world of dynamical equilibrium can be associated with a non-trivial global
matter distribution, and that this distribution is necessarily purely fractal with D = 2.
Thus, U0 world in the special case of d0 = 1 can be consistently identified with the medium
scale world observed and discussed in §2.1.

• In the special limiting case of v0 = c, the particles concerned must be massless so that,
since they form an equilibrium distribution, we can identify them as composing a blackbody
radiative background.

Finally, therefore, on the classical interpretation, we have a cosmos in which all particle motions
are uniform with velocities satisfying only the condition 0 ≤ v0 < c, within which matter
is distibuted fractally, D = 2, and with an associated blackbody radiation background. In
summary, The Leibniz Question is completely answered by the special case d0 = 1.

9.2 Mach’s Principle: What is it? Where is it?

Mach’s statement

... I have remained to the present day the only one who insists upon referring the
law of inertia (Newton’s First Law) to the earth and, in the case of motions of great
spatial and temporal extent, to the fixed stars ... Mach (1919)

is a succint expression of that idea for which Einstein coined the phrase Mach’s Principle and
which many, over the years, have interpreted to mean that, somehow or other, inertia is induced
in any mass by the action of all other masses in the universe. The very vagueness of the idea, as
expressed above, is probably why equally many over the years have failed in their attempts to
quantify it in any meaningfull sense.

But having posed The Leibniz Question:

Is it possible to conceive a non-trivial global mass distribution, isotropic about ev-
ery spatial origin, which is in a state of dynamical equilibrium (motion everywhere
uniform) and, if so, what are the properties of this distribution?
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and resolving it in the manner of §9.1 we see that, interpreting this resolution in classical terms,
the Law of Inertia is indeed to be referred to Mach’s fixed stars (although not, perhaps, in the
sense that he imagined), so long as these are identified with the observed fractal D ≈ 2 material
distribution of the medium scale cosmos. However, for the purpose of answering the question
What is Mach’s Principle? in a more general way, any attempt to interrogate Mach’s statement
above in any detailed sense leads to a conceptual cul-de-sac for the reason that, implicit to its
formulation, are classical ideas of time, velocity and force, none of which have survived in the
Leibniz-Mach synthesis described herein, except as secondary aids to understanding.

So, if we are to provide an answer to the Mach’s Principle question, we can probably do no
better than identifying it with the fundamental principles upon which the present Leibniz-Mach
synthesis is based. We are led to:

Mach’s Principle - a conjunction of two propositions: firstly, that metrical space is a
secondary construct projected out of the internal relationships between the objects in
an ensemble of objects; secondly, that the notion of time passing is no more and no
less than an idealized model for the process of ordered change within the ensemble.

10 A simple model for disc galaxies

The special U0-world case of d0 = 1 corresponds to the purely fractal D = 2 equilibrium world,

MF (R) ≡
(

4πρ0R
2
)

FRAC
(32)

where ρ0 is the characteristic mass surface density of this equilibrium world.

Noting that the gravitation constant G has units of (acceleration/mass surface density) then,
corresponding to the characteristic mass surface density ρ0 > 0 scale of U0 world, there must be
a corresponding characteristic acceleration scale

a0 = 4πρ0G. (33)

But it is precisely the idea of there being a critical boundary between the internal and external
dynamical environments of disc galaxies, defined by an acceleration scale, which underpins the
MOND algorithm put forward by Milgrom (1983a,b). This algorithm has had many, very difficult
to discount, successes across the general area of disc galaxy phenomonology. See Sanders (2014)
for a detailed historical account. The fact that U0 world forms, by definition, the external
environment of disc galaxies combined with the fact that this world also has an associated
characteristic acceleration scale, a0 defined at (33), raises the obvious hypothesis that:

• the boundary between the interior environment of disc galaxies and the exterior environ-
ment of U0 world is identical to the MOND critical acceleration boundary;

• the characteristic acceleration scale of U0, defined at (33), is the MOND critical acceleration
parameter;

• the degenerate-state case of §7.4, which allows for circular motions only, provides the basis
for a simple model for the mass distributions and internal motions of disc galaxies.
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10.1 The underlying theory content

To construct the disc-galaxy model, we begin by assuming the existence of an unspecified spher-
ically symmetric mass perturbation, M(R) say, of the equilibrium environment, MF (R). By
definition, for such a system,

M(R) → MF (R) ≡ 4πρ0R
2 as R → ∞.

In the degenerate-state case of §7.4, the dynamics associated with an arbitraryM(R) admit only
circular motions, given by

V 2

rot(R) = V 2

∞

4πρ0R
2

M(R)
. (34)

Clearly, Vrot → V∞ as R → ∞, so that V∞ is an asymptotic flat rotation velocity.

Now, whilst a disc is, by definition, not spherical, it does sit within its external environment
which is spherical. So, our very simple model assumes spherical symmetry, and that all motions
take place within the equatorial plane. Equation (34) is then the foundation of the disc-galaxy
model.

10.2 The MOND phenomenological content

If we now consider the evidence of MOND that there is a critical acceleration parameter, a0 say,
related to the critical surface density parameter by

ρ0 =
a0
4πG

and a corresponding critical radius, R0, at which the critical acceleration is reached, then we
can hypothesize that R0 defines the boundary between the interior environment of disc galaxies
and the exterior equilibrium environment. On the basis of this hypothesis, we can deduce that
M(R) in the disc-model of (34) must have the general structure:

M(R) = Mg(R), R < R0

M(R) = Mg(R0) + 4πρ0
(

R2 − R2

0

)

, R ≥ R0

where Mg(R) is the model for the mass distribution within the galaxy interior. Thus, for this
general structure, (34) becomes

Vrot(R) = V∞

(

4πρ0R
2

Mg(R)

)1/2

, R < R0

(35)

Vrot(R) = V∞

(

4πρ0R
2

Mg(R0) + 4πρ0
(

R2 −R0
2
)

)1/2

, R ≥ R0

where m0 ≡ Mg(R0) is the total mass contained within R ≤ R0 and is consequently the total
mass of the galaxy concerned.
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10.3 The Tully-Fisher relation & Freeman’s Law

We use the disc-model to derive Freeman’s Law and the baryonic Tully-Fisher relation for a very
specific class of galaxies defined by an hypothesized property of some rotation curves. Given
the significance of the Tully-Fisher relation and Freeman’s Law to modern astrophysics then,
in effect, the following amounts to the prediction that the hypothetical class of rotation curves
actually does exist.

We remember that R = R0 is the critical acceleration boundary, and is therefore also the bound-
ary between the galactic interior and the exterior environment, and that m0 is the total mass
contained within R ≤ R0 and is therefore the total galactic mass.

From the general model (35), we have directly that

V 2

0
= V 2

∞

(

4πρ0R
2
0

m0

)

≡ V 2

∞

(

a0R
2
0

Gm0

)

(36)

where m0 ≡ M(R0) and after (33) has been used. Since R = R0 is the critical acceleration
boundary, then we immediately have

V 2

0

R0

= a0 = V 2

∞

(

a0R0

Gm0

)

from which the scaling relationship follows:

V 2
∞
R0

m0

= G. (37)

Now hypothesize that there exists a class of galaxies for which

V∞ =
√
k V0 (38)

for some global constant k. For this class, (36) gives:

m0

R2
0

=
k a0
G

, (39)

so that, for this hypothetical class of galaxies, Freeman’s Law is exactly satisfied.

Eliminating R0 between (37) and (39), we find:

V 4

∞
= (ka0G)m0 (40)

so that the baryonic Tully-Fisher relation is also exactly satisfied on the hypothetical galactic
class.
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11 Summary and Conclusions

The basic work of this paper gives mathematical expression - in the form of a Leibniz-Mach
synthesis which pays perfect homage to the conservation laws - to two very old, but simple,
ideas:

• the first, mostly associated with the names of Aristotle, Leibniz and Berkeley, can be simply
expressed as the idea that space is a secondary construct projected out of relationships
between material objects which, whatever these might be, are primary;

• the second, associated with the names of Leibniz and Mach, is that where time is concerned,
the most we can ever do is to define the time required for process A to occur in terms of
the time required for process B to occur. For example, I can walk 50 miles between one
sunrise and the next. In effect, the notion of time passing is no more and no less than
an idealized model for the process of ordered change within a physical system, with one
arbitrarily chosen system then providing a standard clock for the generality of timekeeping.

Whilst this Leibniz-Mach synthesis is not limited to any particular domain, in the first instance,
it was driven by that which we nominated as the The Leibniz Question:

Is it possible to conceive a non-trivial global mass distribution, isotropic about ev-
ery spatial origin, which is in a state of dynamical equilibrium (motion everywhere
uniform) and, if so, what are the properties of this distribution?

The answer to this question, arising as a very special case of the synthesis, is yes provided that
the mass distribution concerned is fractal, D = 2, together with an associated blackbody radia-
tive background. This very special case, which we nominate as U0 world, corresponds closely to
the cosmos which is observed on medium scales and discussed in §2.

Given that the special case of U0 world corresponds to the observed cosmos on medium scales,
we are prompted to consider, briefly, the small scale → medium scale boundary for which there
is strong circumstantial evidence supporting the idea that this is the MOND critical acceler-
ation boundary (Milgrom (1983a,b)). On the basis of this evidence, we constructed a simple
disc-galaxy model and then showed how the Tully-Fisher relation and Freeman’s Law arise in
a strongly connected way for a very specific class of galaxies - this class being defined by the
simple hypothetical property that there exists a class of galaxies for which the rotation velocity
at the critical MOND boundary is directly proportional to the asymptotic flat rotation velocity
of the rotation curves of the galaxies concerned; that is, the relationship V∞ =

√
kV0 (for some

global constant k) holds for some subclass of all galaxies.

In summary, we have answered the Leibniz Question, and have arrived at a very specific pre-
diction for the existence of a special class of disc galaxies defined by a simple rotation curve
property.
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A A Resolution of the Metric Tensor

The algebra of this section is most easily performed by the change of notation:

Φ ≡ R2

2
, R2 ≡

(

x1
)2

+
(

x2
)2

+
(

x3
)2

,

M ′ ≡ dM

dΦ
≡ 1

R

dM

dR
, M ′′ ≡ d2M

dΦ2
, etc.

The general system is given by

gab =
∂2M

∂xa∂xb
− Γk

ab

∂M

∂xk
,

Γk
ab ≡ 1

2
gkj
(

∂gbj
∂xa

+
∂gja
∂xb

− ∂gab
∂xj

)

,

and the first major problem is to express gab in terms of the mass function, M . The key to
resolving this is to note the relationship

∂2M

∂xa∂xb
= M ′δab +M ′′xaxb,

where M ′ ≡ dM/dΦ, M ′′ ≡ d2M/dΦ2, Φ ≡ R2/2, since this immediately suggests the general
structure

gab = Aδab +Bxaxb, (41)

for unknown functions, A and B. It is easily found that

gab =
1

A

[

δab −
(

B

A + 2BΦ

)

xaxb

]

so that, with some effort,

Γk
ab =

1

2A
H1 −

(

B

2A(A+ 2BΦ)

)

H2

where

H1 = A′(xaδbk + xbδak − xkδab) +B′xaxbxk + 2Bδabx
k

and

H2 = A′(2xaxbxk − 2Φxkδab) + 2ΦB′xaxbxk + 4ΦBxkδab.

Consequently,

gab =
∂2M

∂xa∂xb
− Γk

ab

∂M

∂xk
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≡ δabM
′

(

A+ A′Φ

A+ 2BΦ

)

+ xaxb

(

M ′′ −M ′

(

A′ +B′Φ

A+ 2BΦ

))

.

Comparison with (41) now leads directly to

A = M ′

(

A+ A′Φ

A+ 2BΦ

)

= M ′

(

(AΦ)′

A+ 2BΦ

)

, (42)

B = M ′′ −M ′

(

A′ +B′Φ

A+ 2BΦ

)

(43)

which is a second order differential equation for the determination of M(R).

The first of the two equations above can be rearranged as

B = − A

2Φ
+

M ′

2Φ

(

(AΦ)′

A

)

(44)

or as
(

M ′

A+ 2BΦ

)

=
A

(AΦ)′
, (45)

and these expressions can be used to eliminate B in the second equation as follows.

Use of (45) in (43) gives

B = M ′′ − A

(AΦ)′
(A′ +B′Φ) →

(AΦ)′ B + (AΦ)B′ = M ′′ (AΦ)′ −AA′ →

(AΦB)′ = M ′′ (AΦ)′ −AA′. (46)

But, from (44),

AΦB = −1

2
A2 +

1

2
M ′ (AΦ)′

so that (46) becomes:

[

−1

2
A2 +

1

2
M ′ (AΦ)′

]

′

= M ′′ (AΦ)′ − AA′ →

1

2
M ′′ (AΦ)′ +

1

2
M ′ (AΦ)′′ = M ′′ (AΦ)′ →

M ′ (AΦ)′′ = M ′′ (AΦ)′ →
(d0M

′) = (AΦ)′ →
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d0 (M −M0) = AΦ where M0 ≡ M(0). (47)

so that, finally, using (47) and (44), we find for A and B respectively:

A ≡ d0 (M −M0)

Φ
,

B ≡ − A

2Φ
+

(

M ′

2Φ

)(

d0M
′

A

)

= −
(

d0 (M −M0)

2Φ2
− (M −M0)

′ (M −M0)
′

2 (M −M0)

)

We can now revert to the notation of the main text M ′ ≡ dM/dR etc, so that the foregoing
results can be expressed as:

A ≡ 2d0 (M −M0)

R2
,

B ≡ − 1

2R2

(

4d0 (M −M0)

R2
− (M −M0)

′ (M −M0)
′

(M −M0)

)

.

B Conservative Form of Equations of Motion

From the clock constraint equation (22), we have

Ṙ · Ṙ =
c2

8πρ0
A− B

A
R2Ṙ2. (48)

This suggests defining a potential function as:

V = E0 −
1

2

(

c2

8πρ0
A− B

A
R2Ṙ2

)

, (49)

for some arbitrary constant E0, and where A and B are defined at (11). Using the identity

dV
dR

≡ ∂V
∂R

+
∂V
∂Ṙ

R̈

Ṙ
,

where we assume that the second term is always defined because the case of circular motions
was explicitly excluded in the derivation of (17), then we easily obtain

dV
dR

= − c2

16πρ0
A′ +

R2Ṙ2

2A

(

B′ − A′B

A

)

+
B

A

(

RṘ2 +R2R̈
)

.

The above expression leads to

2A
dV
dR

R̂ = α R̂. (50)
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where

α ≡
(

− c2

8πρ0
AA′ +B′R2Ṙ2 − A′B

A
R2Ṙ2 + 2BR

(

Ṙ2 +RR̈
)

)

From (48), we have

c2

8πρ0
A =

B

A
R2Ṙ2 + Ṙ · Ṙ (51)

which, when substituted into (50), gives

2A
dV
dR

R̂ = α R̂.

where

α ≡
(

B′R2Ṙ2 + 2BR
(

Ṙ2 +RR̈
)

−A′ Ṙ · Ṙ− 2
A′B

A
R2Ṙ2

)

Finally, when used in (24) this gives

R̈ = −dV
dR

R̂

for the result.

C Potential V purely in terms of R and angular momen-

tum

From the clock constraint equation (21), we have, directly,

Ṙ2 +R2θ̇2 =
v2
0

8πρ0
A− B

A
R2Ṙ2

from which we find

(

A +BR2
)

Ṙ2 + AR2θ̇2 =
v2
0

8πρ0
A2.

A small amount of algebra then gives the clock constraint equation as:

Ṙ2 +R2θ̇2 =
v2
0

8πρ0

(

A2

A+BR2

)

+ h2

(

B

A+BR2

)

where, for conserved angular momentum, h ≡ R2θ̇. Consequently, the potential function of (49)
can be written as

V = −1

2

[

v20
8πρ0

(

A2

A+BR2

)

+ h2

(

B

A+BR2

)]

(52)
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From (11), we have

A ≡ 2 d0M
R2

, B ≡ − 1

2R2

(

4 d0M
R2

− M′M′

M

)

. (53)

so that

A+BR2 =
M′M′

2M .

A small amount of algebra now gives, for the expressions in (52)

(

A2

A+BR2

)

=
8 d20M3

R4M′M′

(

B

A+BR2

)

= − 4 d0M2

R4M′M′
+

1

R2

so that (52) becomes:

V = −1

2

[

v20
8πρ0

(

8 d20M3

R4M′M′

)

+ h2

(

− 4 d0M2

R4M′M′
+

1

R2

)]

and the corresponding form of the clock constraint equation being:

Ṙ2 +R2θ̇2 =

[

v2
0

8πρ0

(

8 d2
0
M3

R4M′M′

)

+ h2

(

− 4 d0M2

R4M′M′
+

1

R2

)]

= 4 d20v
2

0

(

M
4πρ0

− h2

d0v20

)(

M2

R4M′M′

)

+
h2

R2
(54)

In conventional terms this is equivalent to the energy equation.
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