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Abstract. One can make the very simple hypothesis that the Universe is the

inside of an hypersphere in 4 dimensions, where our 3-dimensional world consists

of hypersurfaces at different radii. Based on this assumption it is possible to show

that Universe expansion at a rate corresponding to flat comes as a direct geometrical

consequence without intervening critical density; any mass density is responsible for

opening the Universe and introduces a cosmological constant. Another consequence

is the appearance of inertia swirls of expanding matter, which can explain observed

velocities around galaxies, again without the intervention of dark matter. When

restricted to more everyday situations the model degenerates in what has been called

4-dimensional optics; in the paper this is shown to be equivalent to general relativity

in all static isotropic metric situations. In the conclusion some considerations bring

the discussion to the realm of 4D wave optics.
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1. Introduction

In this work I make the simple hypothesis that the Universe can be modelled as the

volume of an hypersphere in 4 Euclidean dimensions. Naturally the position vector for

any point has one single coordinate, the distance to the center of the hypersphere, but

displacements have all 4 coordinates: one distance and 3 angles. It is easy to evaluate

the length of any displacement and one can easily conclude that for small displacements,

provided the distance to the center is large, the angles can be replaced by distances on

a plane tangent to an hyperspherical surface, providing a local Euclidean frame for the

study of displacements.

In general, though, the hyperspherical nature of the space has important

consequences. It is shown that by assigning the meaning of time to the length of

displacements one concludes that the distance between any two points in a 3-dimensional

hypersurface space increases at a rate proportional to the distance; this is exactly what

one finds in our Universe but is derived as a consequence of geometry and not of any

critical mass density. A similar argument applied to rotary motion allows the conclusion

that this is a natural form of inertial movement and can be applied to galaxies’ dynamics

to explain the exceedingly large orbital velocities that are detected. Here too, geometry

and not hidden mass is the main cause of movement. Naturally mass densities are

important for the detailed analysis of observations but they are responsible only for

perturbations of a global phenomenon with geometrical causes; it is shown that any mass

density is responsible for opening the Universe as well as for a cosmological constant.

On a small scale the space becomes nearly Euclidean and it must be shown

that this space is adequate for the description of classical mechanics, at least as

effectively as general relativity does; dynamics in Euclidean 4-space is called 4-

dimensional optics (4DO) because it is governed by an extension of Fermat’s principle.

The paper demonstrates full equivalence between dynamics in hyperbolic general

relativity space and 4DO for the case of static isotropic metrics; the particular case

of Schwarzschild’s metric is analyzed and an exponential metric offering the same

predictions as Schwarzschild’s is proposed.

2. 4-dimensional hyperspheric coordinates

As an introduction to 4-dimensional hyperspheric coordinates it is useful to revise the

case of spherical coordinates in 3 dimensions. The position vector for any point is always

written s = rσr, where σr is a unitary vector. If needed we can always express σr in

terms of the orthonormed frame {σ1, σ2, σ3}
σr = sin θ cos φ σ1 + sin θ sin φ σ2 + cos θ σ3. (1)

We say that {σ1, σ2, σ3} is a fiducial frame because it is orthonormed and its vectors

don’t rotate in a displacement.

A displacement in spherical coordinates is the vector

ds = ∂rs dr + ∂θs dθ + ∂φs dφ, (2)
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with ∂µ representing partial derivative with respect to coordinate µ. Resorting to the

fiducial frame we can establish the derivatives of σr

∂rσr = 0, ∂θσr = σθ, ∂φσr = cos θ σφ, (3)

where {σr, σθ, σφ} form a new orthonormed frame which is not a fiducial frame because

its vectors rotate.

σθ = cos θ cos φ σ1 + cos θ sin φ σ2 − sin θσ3, (4)

σφ = − sin φ σ1 + cos φ σ2. (5)

We can express this rotation by a set of partial derivatives

∂rσr = 0, ∂θσr = σθ, ∂φσr = sin θσφ,

∂rσθ = 0, ∂θσθ = −σr, ∂φσθ = cos θσφ, (6)

∂rσφ = 0, ∂θσφ = 0, ∂φσφ = − sin θ σr − cos θ σθ.

The displacement vector can now be found by application of the derivatives to Eq.

(2)

ds = σrdr + rσθdθ + r sin θσφdφ. (7)

A coordinate frame for spherical coordinates can’t be {σr, σθ, σφ}, however, because the

general definition for a coordinate frame is gµ = ∂µs, [1]. Using Eq. (7) we can write

gr = σr, gθ = rσθ, gφ = r sin θ σφ. (8)

The displacement vector ds is now written in the general form

ds = gjdxj ; (9)

where the index j is replaced by (r, θ, φ), xµ represents the coordinates r, θ, φ,

respectively, and the summation convention for repeated indices is used. Defining the

metric tensor elements gjj = gj ·gj we can evaluate an interval by

(ds)2 = ds·ds = gµνdxjdxj . (10)

The spherical coordinates example can now be easily extended to a general situation

in 4 dimensions. We will consider 4-dimensional space with hyperspheric symmetry

where R is the distance to the origin and αj, j = 1, 2, 3 are angles. The position vector

is naturally s = Rσ0, with σ0 the unit vector of the radial direction; the displacement

vector is obtained by extrapolation of Eq. (7)

ds = dRσ0 + R
(

dα1σ1 + sin α1dα2σ2 + sin α1 sin α2dα3σ3

)

. (11)

If the displacements are small compared to the hypersphere radius R, we can choose a

privileged origin for the angles such that all the angles are small and the sines become

unity.

ds = dRσ0 + R
(

dαjσj

)

. (12)
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We will now define the new coordinates xj = Rαj so that dxj = dRαj +Rdαj. Inverting

the relation it is Rdαj = dxj − dRxj/R. Replacing above

ds = dRσ0 +

(

dxj − dR

R
xj

)

σj . (13)

And the displacement length is evaluated by

(ds)2 = (dR)2 +
∑

(

dxj − dR

R
xj

)2

. (14)

There is no reason why the displacement should not be given in time units, as long as

we use some length and time standards, L and T respectively, and replace ds = dtL/T ;

as a consequence L/T = c is the speed of light in vacuum.

(dt)2 =

(T
L

)2
[

(dR)2 +
∑

(

dxj − dR

R
xj

)2
]

. (15)

Dividing both members by (dt)2

1 =

(T
L

)2



(Ṙ)2 +
∑

(

ẋj − Ṙ

R
xj

)2


 (16)

We are going to interpret the coordinate R as the time elapsed from the

Universe’s origin, albeit measured as length, and coordinates xj as being the usual

x, y, z coordinates of 3-dimensional space. We will develop the consequences of this

interpretation in the following paragraphs.

3. Free space dynamics

Examining displacements on 3D hypersurface we make Ṙ = 0 in Eq. (16)

1 =

(T
L

)2
∑

(ẋj)2 =

(T
L c

)2

. (17)

Light travels with velocity c in 3-space and the model can accommodate it by zeroing

the displacement in the radial direction; photons follow great circles of constant R.

Proceeding to the analysis of massive particle’s dynamics we note that the Euler-

Lagrange equations for the geodesics of any Riemanian space can be derived from a

constant Lagrangian, made equal to 1/2 for convenience [2]. Using Eq. (12) we can

evaluate ds2 = ds·ds and divide both members by ds2; the first member is then made

equal to twice the Lagrangian

1 = 2L = Ṙ2 + R2
∑

(α̇j)2; (18)

the four conjugate momenta are

pj = R2α̇j = Aj (19)

p0 = Ṙ. (20)



An hypersphere model of the Universe 5

The four Aj are conserved quantities because the Lagrangian is independent from αj ;

Ajσj is a vector whose norm is A. Replacing in Eq. (18)

1 = Ṙ2 +

(

A

R

)2

. (21)

Upon integration, with appropriate choice for the origin of time, we obtain the solution

R =
√

A2 + t2, (22)

Ṙ =
t√

A2 + t2
. (23)

Returning to linear rather than angular coordinates and considering Eq. (19)

ẋj = Rα̇j +
Ṙ

R
xj . (24)

Inserting Eqs. (19) and (22)

ẋj

xj
=

Aj

xj
+

t

A2 + t2
; (25)

the first member defines the Hubble parameter H and the second member tells us that

the velocity does not stay constant but approximately with txj/A2.

Analyzing Eq. (16) we have to decide if and when the term Ṙxj/R can be neglected

in face of ẋj . The condition we want can be expressed by

xj

ẋj
≪ R

Ṙ
; (26)

we have a comparison between two times: on the first member the time it would take

a distant body to travel to the origin of the laboratory coordinates and on the second

member another time which we will assign below to the tame it takes light to travel

from the confines of the Universe. This condition is met for nearby objects which are

not moving exceedingly slow; when it can be met Eq. (16) reduces to

(Ṙ)2 +
∑

(ẋj)2 = c2, (27)

placing an upper limit on the speed of moving particles. It is also apparent that the

movement of masses implies that they move outwards in the hypersphere through Ṙ.

Returning to Eq. (18) it is easy to conclude that for bodies comoving with the

Universe’s expansion we must have constant αj and Ṙ = c, so the Universe must be

expanding at the speed of light. For the distance coordinates we get

α̇j =
ẋjR − Ṙxj

R2
= 0. (28)

According to the above argument

ẋj

xj
=

Ṙ

R
=

c

R
= H ; (29)

H is the Hubble parameter and its measurement gives us the size of present day Universe.

If we use for the Hubble parameter a value of 81 km s−1/ Mpc the resulting size for the

Universe is 1.2×1010 ly. Additionally, considering the Universe’s expansion is influenced
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by its mass density so that A is effectively positive, Eq. (25) tells us the effective Hubble

parameter will also increase with time, approximately with t/A2.

The constant orbital velocity observed in the periphery of most galaxies (ωr =

constant) is one of the big puzzles in the Universe which is normally explained with

recourse to massive halos of dark matter [3, 4], although some have tried different

explanations with limited success; for instance Milgrom [5, 6] modified Newton dynamics

empirically. Below we look at the predictions of the hypersphere model for orbital

velocities to verify that such explanations are not needed if one accepts that the universe

is expanding as an hypersphere.

The gravitational field on the periphery of a galaxy must be negligible without

the dark matter halo contribution. The question we will try to answer is whether the

Universe expansion can drive a rotation, once the material has been set in motion by

some other means. In the affirmative case we must find out if the rotation speed can be

kept invariant with distance to the center, as observed in galaxies. Recalling Eq. (13)

we will rewrite this equation in spherical coordinates

ds = dRσ0 + drσr + rdθσθ + r sin θdφσφ − dR

R
rσr. (30)

Notice the last term and compare it to Eq. (13); we have replaced xjσj by rσr in a

standard passage from Cartesian to spherical coordinates. It is usual to make θ = π/2

whenever dealing with orbits, because we know in advance that orbits are flat. Defining

dt2 = ds2 and calling v to ds/dt we can write

v = Ṙσ0 +

(

ṙ − Ṙr

R

)

σr + rφ̇σφ. (31)

If the parenthesis vanishes the movement becomes circular without any central potential;

it is driven solely by the galaxy expanding at the same rate as the Universe. The equation

above shows that rφ̇ = constant is the natural inertia condition for the hyperspheric

Universe; swirls will be maintained by a radial expansion rate which exactly matches

the quotient Ṙ/R. In any practical situation Ṙ will be very near the speed of light and

the quotient will be virtually equal to the hubble parameter; thus the expansion rate

for sustained rotation is ṙ/r = H . If applied to our neighbor galaxy Andromeda, with a

radial extent of 30 kpc, using the Hubble parameter value of 81 km s−1/Mpc, as above,

the expansion velocity is about 2.43 km s−1; this is to be compared with the orbital

velocity of near 300 km s−1.

The model proposed for galaxy dynamics consists of a core dominated by

gravitational and electromagnetic interactions from which some material escapes and

starts swirling by inertia, while continuing to be accelerated by the remnants of gravity;

near the periphery all the gravity is extinct and only inertial rotations prevails.

4. Curved space dynamics

The hypersphere model would be useless if it could not be made compatible with classical

mechanics in everyday situations; in this paragraph we will see that full compatibility
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exists.

Equation (15) with the constraint xj ≪ R defines 4D Euclidean space, with

signature (+ + ++), which differs from Minkowski spacetime with signature (+−−−).

If we use x0 to represent R the interval of that space is given by

(dt)2 =
1

c2

∑

µ

(dxµ)2. (32)

In this space Eq. (27) establishes that everything moves with the speed of light and it

becomes natural to extend to 4-space Fermat’s principle which governs geometric optics

in 3D

δ

∫ P2

P1

nds = 0, (33)

where n is a function of coordinates 1 to 3, called refractive index, defined as the ratio

between local 4-speed and the speed of light in vacuum.

n =
1

v
=

dt

ds
. (34)

The extension of Fermat’s principle to 4D justifies our use of the designation 4-

dimensional optics to refer the study of 4D dynamics and wave propagation; we will

use the acronym 4DO as a substitute for the full designation. From this point onwards

we will make c = 1 following the uses of general relativity papers, which corresponds to

using actual displacements measured in length rather than time units.

In an homogeneous medium Eq. (33) states that trajectories are straight lines in

4-space; in particular when n = 1, everything moves with 4-velocity with modulus equal

to the speed of light in vacuum. Geometric optics in 3D becomes a direct consequence of

4DO and is obtained from Eq. (33) by setting dx0 = 0, in agreement with our previous

contention that photons travel on 3D space;

δ

∫ R2

R1

ndl = 0, (35)

with (dl)2 =
∑

(dxj)2 and j = 1 . . . 3.

The integrand in Fermat’s principle, nds, can be replaced by dt, allowing its

interpretation with the phrase: Radiation and massive bodies travel between two points

in 4-space along a path which makes time interval an extremum. Using (ds)2 from Eq.

(32) the time interval is given by

(dt)2 = n2
∑

(dxµ)2. (36)

This can be generalized further without considering non-isotropic media;

(dt)2 = (n0dx0)2 + (nr)
2
∑

(dxi)2. (37)

The anisotropy relative to coordinate x0 is not apparent in 3 dimensions, and the medium

can still be classified as isotropic. An alternative interpretation of Eq(̇37) is in terms

of interval of curved isotropic space; it is equivalent saying that particles and radiation
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travel slower than in vacuum in a given region of space and saying that in the same

region space is curved. Following the standard Lagrangian choice

1 = 2L = (n0ẋ
0)2 + (nr)

2
∑

(ẋi)2. (38)

The Lagrangian is independent from x0, so we have a conservation equation

(n0)
2ẋ0 =

1

γ
. (39)

Replacing above,

1 =
1

(n0)2γ2
+ (nr)

2
∑

(ẋi)2. (40)

The remaining 3 Euler-Lagrange equations for the trajectory can be written

d

dt

(

∂L

∂ẋi

)

= ∂iL; (41)

replacing,

d

dt

[

(nr)
2ẋi
]

= n0∂in0(ẋ
0)2 + nr∂inr

∑

(ẋj)2. (42)

Expanding the 1st member, inserting Eq. (39) and rearranging

ẍi =
n0∂in0

n2
r

(ẋ0)2 − ∂inr

nr

∑

(ẋj)2. (43)

The previous equation must now be compared to the predictions of general

relativity. A general static relativistic interval for isotropic coordinates can be written

(ds)2 =

(

1

n0

)2

(dt)2 −
(

nr

n0

)2
∑

(dxi)2. (44)

Since n0 and nr are arbitrary functions of coordinates xj , this form allows all possibilities.

A suitable Lagrangian for this space’s geodesics is

2L = 1 =

(

1

n0

)2(

dt

ds

)2

−
(

nr

n0

)2
∑

(

dxi

ds

)2

. (45)

There is a conserved quantity because the Lagrangian does not depend on t

1

(n0)2

dt

ds
= γ. (46)

Replacing in the lagrangian d/ds → d/dt × dt/ds we obtain again Eq. (40):

1

(n0)2γ2
= 1 − (nr)

2
∑

(ẋi)2. (47)

We conclude that at least for static isotropic metrics the geodesics of general

relativity can be mapped to those of 4DO and so it is a matter of personal preference

which formalism each one uses. We believe that the proof can be extended to all static

metrics but that is immaterial for the present work.

We will now look at Schwarzschild’s metric to see how it can be transposed to

4D optics. We will have to use the dimensionless variable Gm/(c2r), where G is the

gravitational constant. Since a dimensionless variable can be built with Lm/(Mr),
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where M is the mass standard, we will choose M = GL/c2 = GT 2/L and avoid

constants in the expressions.

The usual form of Schwarzschild’s metric is

ds2 =

(

1 − 2m

ρ

)

dt2 −
(

1 − 2m

ρ

)

−1

dρ2 − ρ2(dθ2 + sin2 θdφ2). (48)

This form is non-isotropic but a change of coordinates can be made that returns an

isotropic form D’Inverno [7, section 14.7]:

r =
(

ρ − m +
√

ρ2 − 2mρ
)

/2; (49)

and the new form of the metric is

ds2 =

(

1 − m
2r

1 + m
2r

)2

dt2 −
(

1 +
m

2r

)4
[

dr2 − r2(dθ2 + sin2 θdφ2)
]

. (50)

This corresponds to the refractive indices

n0 =
1 + m

2r

1 − m
2r

, nr =
(1 + m

2r
)3

1 − m
2r

, (51)

which can then be used by 4DO in Euclidean space.

We turn now to the constraints on the refractive indices so that experimental data

on light bending and perihelium advance in closed orbits can be predicted. Light rays

are characterized by dx0 = 0 in 4DO or by ds = 0 in general relativity; the effective

refractive index for light is then
√

1
∑

(ẋi)2
= nr. (52)

For compatibility with experimental observations nr must be expanded in series as (see

[8])

nr = 1 +
2m

r
+ O(1/r)2. (53)

This is the bending predicted by Schwarzschild’s metric and has been confirmed by

observations.

For the analysis of orbits its best to rewrite Eq. (38) for spherical coordinates; since

we know that orbits are flat we can make θ = π/2

n2

0
τ̇ 2 + n2

r(ṙ
2 + r2φ̇2) = 1. (54)

The metric depends only on r and we get two conservation equations

n2

0
τ̇ =

1

γ
, n2

rr
2φ̇ = J. (55)

Replacing

1

γ2n2

0

+ n2

r ṙ
2 +

J2

n2
rr

2
= 1. (56)
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The solution of this equation calls for a change of variable r = 1/u; as a result it is also

ṙ = φ̇dr/dφ; replacing in the equation and rearranging
(

du

dφ

)2

=
n2

r

J2
− n2

r

J2γ2n2

0

− u2. (57)

To account for light bending we know that nr ≈ 1 + 2mu. For n0 we need 2nd

order approximation [8], so we make n0 ≈ 1 + αmu + βm2u2. We can also assume that

velocities are low, so γ ≈ 1
(

du

dφ

)2

≈ 2αm

J2
u +

(

−1 +
8αm2

J2
− 3α2m2

J2
+

2βm2

J2

)

u2. (58)

For compatibility with Kepler’s 1st order predictions α = 1; then, for compatibility

with observed planet orbits, β = 1/2. Together with the constraint for n0, these are

the conditions that must be verified by the refractive indices to be in agreement with

experimental data.

We know, of course, that the refractive indices corresponding to Schwarzschild’s

metric verify the constraints above, however that is not the only possibility.

Schwarzschild’s metric is a consequence of Einstein’s equations when one postulates

that vacuum is empty of mass and energy, but the same does not necessarily apply in

4DO. Leaving an open question about what equations should be the counterparts of

Einstein’s in 4DO, one interesting possibility for the refractive indices, in full agreement

with observations, is provided by

n0 = em/r ≈ 1 +
m

r
+

m2

2r2
, (59)

nr = e2m/r ≈ 1 +
2m

r
. (60)

These refractive indices are as effective as those derived from Schwarzschild’s metric

for light bending and perihelium advance prediction, although they do not predict black

holes. There is a singularity for r = 0 which is not a physical difficulty since before that

stage quantum phenomena have to be considered and the metric ceases to be applicable;

in other words, we must change from geometric to wave optics approach.

We shall look now at how the overall mass density in the Universe affects its

expansion rate; for this we will adopt the refractive indices from Eqs: (59) and (60)

and we will denote n0 = n and nr = n2. The radial equation Eq. (30) can be used to

construct a geodesic equation modified with the introduction of n; we are only interested

in radial trajectories so dθ = dφ = 0;

c2 = n2Ṙ2 + n4ṙ2 + n4

(

Ṙ

R

)2

r2. (61)

Rearranging and noting that H = ṙ/r is the measured Hubble parameter

H2 =

(

Ṙ

R

)2

+

(

c2

n4
− Ṙ2

n2

)

1

r2
(62)
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Looking at the definition for n, Eq. (59), we note that m is the mass internal to

a sphere of radius r and must remain constant m = 4πρ0r
3

0
, where ρ0 is the present

density and r0 is the present radius of the sphere. Approximating the exponentials to

the first order terms

H2 ≈
(

Ṙ

R

)2

+
c2 − Ṙ2

r2
+

(2Ṙ2 − 4c2)m

r3
. (63)

This equation is similar to Friedman’s and can be interpreted as follows: when the mass

density is zero the exponentials are unity, we have seen that Ṙ = c and the Hubble

parameter is H = c/R; in the original Friedman equation this situation corresponds

to a flat Universe and is attributed to a critical density, whose source is attributed to

dark matter. Any mass density will make Ṙ < c and the second term produces an

open Universe; the 3rd term is essentially constant because m is proportional to r3 and

corresponds to the cosmological constant.

5. Conclusion

This work is a natural development of speculations I started to make almost 4 years ago

about 4DO being an alternative formulation for relativity. At the onset the reasoning

was that if one wants to restrict 3-dimensional velocity to the speed of light, a logical

thing to do is to postulate a 4th dimension and then state that velocity is always equal

to the speed of light but can make different angles to the 4th dimension. If then only

the 3-dimensional projection of velocity is considered this can take any value between

0 and the speed of light. I wrote several essays elaborating on that concept which are

all available for download from the e-print archive. I made several mistakes along the

way but I don’t intend to remove the respective essays because they will allow readers

to trace the track I’ve followed. There is one work which I still think is important that

people read [9], where a comparison is established between special relativity and 4DO

using the method known as K-calculus.

The hypersphere model of the Universe is a generalization of 4DO; it is simpler

in terms of basic postulates and incorporates 4DO for everyday situations of classical

mechanics. That model is capable of explaining such puzzles as Universe flatness or

orbital velocities around galaxies as resulting entirely from geometry, thus avoiding

the discomfort of postulating enormous amounts of dark matter. When dealing with

classical mechanics problems 4DO was proven to be equivalent to general relativity in

all situations characterized by static isotropic metrics and this equivalence is most likely

extendable to all static metric situations.

One point that made people react against 4DO in the past was the difficulty in

understanding the meaning of coordinate x0. In fact geodesics of 4DO space can be

mapped to those of relativity but the same does not happen with points in both spaces.

A point where two relativistic geodesics cross is not mapped to the crossing point of the

corresponding geodesics in 4DO. A point in relativistic space is interpreted as an event
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and the meaning of points in 4DO space is difficult to grasp. It is important to consider

that 4DO is a space for optics so an elementary particle travelling in a given direction

with a known momentum should not be interpreted as a trajectory in 4DO but rather

as a plane wave that can be represented by any line normal to the wavefronts.

An example taken from optics may clarify the situation. Imagine a plane wave

travelling along the x direction and another plane wave travelling at some angle to

x. It makes no sense to ask at what position along x the two waves meet because

they meet everywhere. However, if these waves were synchronized by some means, for

instance if they were split from the same laser beam and then redirected to converge, it

would be possible to measure the length travelled by the two waves and there would be a

particular position where the two measurements would be equal. In 4DO all trajectories

are representative of waves that were essentially all split from the same source when the

big bang happened; so even if there is a multitude of lines representing a trajectory it is

possible to define events as those points where two measurements along different paths

become equal.

In this work we took the approach of trajectories, which is the 4DO equivalent to

geometrical optics; in the future it is planned to extend this analysis with the help of

wave and Fourier optics in their 4-dimensional extensions.
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