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Abstract We review some recent developments in the conformal gravity the-
ory that has been advanced as a candidate alternative to standard Einstein
gravity. As a quantum theory the conformal theory is both renormalizable
and unitary, with unitarity being obtained because the theory is a PT sym-
metric rather than a Hermitian theory. We show that in the theory there can
be no a priori classical curvature, with all curvature having to result from
quantization. In the conformal theory gravity requires no independent quanti-
zation of its own, with it being quantized solely by virtue of its being coupled
to a quantized matter source. Moreover, because it is this very coupling that
fixes the strength of the gravitational field commutators, the gravity sector
zero-point energy density and pressure fluctuations are then able to iden-
tically cancel the zero-point fluctuations associated with the matter sector.
In addition, we show that when the conformal symmetry is spontaneously
broken, the zero-point structure automatically readjusts so as to identically
cancel the cosmological constant term that dynamical mass generation in-
duces. We show that the macroscopic classical theory that results from the
quantum conformal theory incorporates global physics effects that provide
for a detailed accounting of a comprehensive set of 138 galactic rotation
curves with no adjustable parameters other than the galactic mass to light
ratios, and with the need for no dark matter whatsoever. With these global
effects eliminating the need for dark matter, we see that invoking dark matter
in galaxies could potentially be nothing more than an attempt to describe
global physics effects in purely local galactic terms. Finally, we review some
recent work by ’t Hooft in which a connection between conformal gravity and
Einstein gravity has been found.
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1 Einstein gravity: what must be kept

Following his development of special relativity, Einstein was faced with two
immediate problems. The first was to make Newtonian gravity compatible
with relativity, and the second was to develop a formalism in which not only
uniformly moving observers but also accelerating ones would all be able to
agree on the same physics. While these two issues are logically independent
(even in the absence of gravity one has to able to write Newton’s second law
of motion in an observer-independent way), by imposing general coordinate
invariance and by identifying the spacetime metric gµν(x) as the gravitational
field, Einstein was able to provide a solution to both problems simultaneously.
In this formalism a central role is played by the Christoffel symbols

Γµ
νσ =

1

2
gµλ [∂νgλσ + ∂σgλν − ∂λgνσ] , (1)

since in terms of them one can show that the path that minimizes the distance

ds2 = gµν(x)dx
µdxν (2)

between two points in any geometry (curved or flat) is the one that obeys
the geodesic equation

d2xµ

ds2
+ Γµ

νσ

dxν

ds

dxσ

ds
= 0. (3)

The key feature of this equation is that even though neither of the two terms
that appears in (3) is itself a true coordinate vector, the linear combination
of them is, with the vanishing of their sum in any given coordinate system
ensuring its vanishing in any other.

Even though the Christoffel symbols are not themselves true coordinate
tensors, from them one can construct a quantity that is, viz. the Riemann
tensor as defined by

Rλ
µνκ =

∂Γ λ
µν

∂xκ
+ Γ λ

κηΓ
η
µν −

∂Γ λ
µκ

∂xν
− Γ λ

νηΓ
η
µκ. (4)

The utility of this tensor is that a given spacetime will be flat if and only
if every component of Rλ

µνκ is zero. When all components of Rλ
µνκ are

zero, (3) describes Newton’s second law of motion for a free particle in the
absence of gravity as viewed in an accelerating coordinate system. And when
Rλ

µνκ is non-zero, there is a choice of values for the Christoffel symbols

(viz. the Schwarzschild metric ones that are associated with the vanishing
of the Ricci tensor Rµκ = Rλ

µλκ) that enables (3) to describe Newton’s law
of gravity, again in an arbitrary accelerating coordinate system. Then, with
the Schwarzschild metric also giving relativistic corrections to Newtonian
gravity, the observation of the predicted gravitational bending of light by the
Sun established the validity of the above description of nature.
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One can thus say with confidence that gravity is a covariant metric theory
in which the metric describes the gravitational field, and that the geometry
in the vicinity of the Sun is given by the Schwarzschild metric

ds2 = −B(r)dt2 +A(r)dr2 + r2dθ2 + r2 sin2 θdφ2, (5)

where
B(r) = A−1(r) = 1− 2β/r, β =MG/c2, (6)

up to the perturbative order to which the metric has so far actually been
tested. Thus any viable theory of gravity must embody all of the above, and
we note that in the above we have not specified the equation of motion that
is to be obeyed by the gravitational field. Rather, we have indicated only
what its solution on solar system distance scales needs to look like.

2 Einstein gravity: what could be changed

To complete the theory one thus needs to specify the gravitational field equa-
tions themselves. To this end Einstein postulated that the needed equations
are to be of the form

−
1

8πG

(

Rµν −
1

2
gµνRα

α

)

= T µν
M , (7)

a set of equations that can be obtained via functional variation with respect
to the metric of an action for the Universe of the form

IUNIV = IEH + IM = −
1

16πG

∫

d4x(−g)1/2Rα
α + IM. (8)

In (7) and (8) M denotes the matter field sector and T µν
M is the matter

field energy-momentum tensor. Given (7), we immediately see that in the
source-free region where T µν

M = 0 the Ricci tensor has to vanish, with the
solution given in (5) and (6) then following in the region exterior to a static,
spherically symmetric source.

However, while (5) and (6) follow from (7), this is not the only way to
secure the Ricci-flat Schwarzschild solution. Consider for example an action
for the Universe of the conformal form

IUNIV = IW + IM = −αg

∫

d4x(−g)1/2CλµνκC
λµνκ + IM

≡ −2αg

∫

d4x(−g)1/2
[

RµνRµν −
1

3
(Rα

α)
2

]

+ IM, (9)

where

Cλµνκ = Rλµνκ +
1

6
Rα

α [gλνgµκ − gλκgµν ]

−
1

2
[gλνRµκ − gλκRµν − gµνRλκ + gµκRλν ] (10)
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is the Weyl conformal tensor. Functional variation of this action with respect
to the metric leads to the equation of motion (see e.g. [1])

− 4αgW
µν + T µν

M = 0, (11)

where

Wµν =
1

2
gµν(Rα

α)
;β

;β +Rµν;β
;β −Rµβ;ν

;β −Rνβ;µ
;β − 2RµβRν

β

+
1

2
gµνRαβR

αβ −
2

3
gµν(Rα

α)
;β

;β +
2

3
(Rα

α)
;µ;ν +

2

3
Rα

αR
µν −

1

6
gµν(Rα

α)
2,

(12)

to thus yield a gravitational theory that also has Rµν = 0 as a vacuum
solution.1 This analysis thus shows that the Einstein equations given in (7)
are only sufficient to give the Schwarzschild solution and its non-relativistic
Newtonian limit but not necessary.

The Einstein equations are thus not uniquely selected. Moreover, in and of
itself, the requirement that the gravitational action be a general coordinate
scalar does not at all restrict the gravitational sector of the action to be
of the Einstein-Hilbert IEH form given in (8), with the number of possible
general coordinate invariant gravitational actions that one could write down
actually being infinite, since one could use arbitrarily high powers of the
Riemann tensor and its contractions. This lack of uniqueness is familiarly
reflected in the fact that one is free to augment (8) with a term of the form
−
∫

d4x(−g)1/2Λ where Λ is the cosmological constant.
Beyond this we note that if one takes (7) as a given and extrapolates it

beyond its weak classical gravity solar system origins, one runs into difficul-
ties in essentially every type of extrapolation that one could consider. Thus if
one extrapolates the classical theory to galaxies and clusters of galaxies one
runs into the dark matter problem, if one extrapolates the classical theory to
cosmology one runs into the cosmological constant or dark energy problem,
if one extrapolates to strong classical gravity one runs into the singularity
problem, and if one quantizes the theory and extrapolates far off the mass
shell one runs into the renormalizability and zero-point problems. Now even

1 Since W µν is constructed as the functional variation with respect to the metric
of a gravitational action that is both general coordinate invariant and locally con-
formal invariant, it kinematically obeysW µν

;ν = 0, gµνW
µν = 0. Likewise a matter

energy momentum tensor constructed as the functional variation with respect to
the metric of a matter action that is general coordinate and locally conformal in-
variant will obey T µν

M ;ν = 0, gµνT
µν
M = 0. While the tracelessness of T µν

M forbids
the matter fields from having kinematical or mechanical masses, it is important
to note [1] that it it does not prevent them from acquiring dynamical masses via
spontaneous symmetry breaking. Specifically, as for instance seen explicitly in Sec.
(7) below, the scalar order parameter 〈S|ψ̄ψ|S〉 that gives a fermionic matter field a
mass also carries energy density and momentum that serve to maintain gµνT

µν
M = 0.

Moreover, since in flat space it does this by adding a cosmological constant term
T µν
COS on to the standard kinematic perfect fluid T µν

KIN (see e.g. (45) below and [1]),
it does not affect energy differences or the conservation of T µν

KIN. In flat space T µν
COS

is not observable, and one can use the non-traceless T µν
KIN to describe macroscopic

systems. It is only in its coupling to gravity that presence of T µν
COS can be felt.
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though no dark matter has yet been detected and dark energy is not yet at
all understood, if one nonetheless takes dark matter and dark energy as a
given, one then encounters many successes as well (such as big bang nucle-
osynthesis, anisotropy of the cosmic microwave background, strong lensing).
However, to achieve these successes one has to take the energy budget of the
Universe to be of order 70% dark energy and 25% dark matter, with only
5% or so being regular luminous baryonic matter. Not only is there as yet
no detection of the needed dark matter particles, the required amount of
dark energy is 60 orders of magnitude or so less than the amount expected
from fundamental elementary particle physics – and if one were to use the
large particle physics value the fits would be disastrous. Moreover, with all
applications to date of gravity to astrophysics and cosmology having been
made with gravity itself being treated classically, there is no guarantee that
the current successes of standard Einstein gravity would not be modified by
its non-renormalizable quantum corrections. Given these concerns we shall
thus look for a completely different extrapolation of solar system wisdom,
in a theory that is unambiguously specified. As we shall see, via the imposi-
tion of a particular invariance principle, namely local conformal invariance,
none of the above extrapolation problems or ambiguities will any longer be
encountered.

3 Conformal gravity: an ab initio approach

To see how things work, we note that if we start with the kinetic energy of
a free massless fermion in flat spacetime, then in order to obtain an action
that is locally gauge invariant under ψ(x) → eiβ(x)ψ(x) (we suppress inter-
nal symmetry group indices), we introduce a gauge field that transforms as
Aµ(x) → Aµ(x) + ∂µβ(x), and minimally couple according to

IM = −

∫

d4xψ̄(x)γµ[i∂µ +Aµ(x)]ψ(x). (13)

Similarly, if we start with the kinetic energy of a free massless fermion in flat
spacetime, in order to obtain an action that is locally coordinate invariant,
we introduce the fermion spin connection Γµ(x), with the action taking the
form

IM = −

∫

d4x(−g)1/2ψ̄(x)γµ(x)[i∂µ + iΓµ(x)]ψ(x), (14)

with γµ(x) = V µ
a (x)γ̂a and Γµ(x) = ([γν(x), ∂µγν(x)]− [γν(x), γσ(x)]Γ

σ
µν )/8,

and with V µ
a (x) being a vierbein and the four γ̂a being the special-relativistic

Dirac gamma matrices.
Having now obtained (14) this way, we find that without having required

it explicitly, this action actually has an additional symmetry, as it is lo-
cally conformal invariant under ψ(x) → e−3α(x)/2ψ(x), V a

µ (x) → eα(x)V a
µ (x),

gµν(x) → e2α(x)gµν(x). Consequently, we can regard the spin connection
Γµ(x) as being introduced not to maintain local coordinate invariance but
rather to maintain local conformal invariance instead, in exactly the same
minimally-coupled way that Aµ(x) maintains local gauge invariance. Thus if
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we require that the kinetic energy of a massless fermion be invariant under
complex phase transformations of the form ψ(x) → e−3α(x)/2+iβ(x)ψ(x), we
will be led to an action

IM = −

∫

d4x(−g)1/2ψ̄(x)γµ(x)[i∂µ + iΓµ(x) +Aµ(x)]ψ(x) (15)

that is locally gauge invariant and locally conformal invariant combined. (Un-
der a local gauge transformation the metric transforms as gµν(x) → gµν(x),
while under a local conformal transformation the gauge field transforms as
Aµ(x) → Aµ(x).)

The reason why such a local conformal structure emerges in (14) is that
massless particles move on the light cone, and the light cone is not just
Poincare invariant, it is invariant under the full 15-parameter conformal
group SO(4, 2). (If the ds2 = gµν(x)dx

µdxν line element is zero, then so

is ds2 = e2α(x)gµν(x)dx
µdxν .) Moreover, the covering group of SO(4, 2) is

SU(2, 2). Since SU(2, 2) is generated by the 15 Dirac matrices (γ5, γµ, γµγ5,
[γµ, γν ]), its fundamental representation is a fermionic field, and the full con-
formal structure of the light cone is thus built into a massless fermionic field,
with a 4-component Dirac spinor being irreducible under the conformal group
even as it is reducible under Poincare.

As we see, it is thus natural to take fermions to be the most basic ele-
ments in physics, with internal symmetry gauge fields and a gravitational spin
connection being induced once one gives the fermion kinetic energy a local
complex phase invariance. However, such a starting point does not generate
any kinetic energy terms for the gauge and gravitational fields. To actually
generate them rather than just postulate them we take note of a calculation
by ’t Hooft [2]. Specifically, ’t Hooft evaluated the logarithmically divergent
part of the path integral

∫

Dψ̄Dψ exp(iIM) associated with (15), and found
that after dimensional regularization it took the form of an effective action:

IEFF =

∫

d4x(−g)1/2C

[

1

20
[RµνRµν −

1

3
(Rα

α)
2] +

1

3
FµνF

µν

]

, (16)

where C = 1/8π2(4 − D) in spacetime dimension D. Comparing with (9)
we see that we have generated none other than the conformal gravity action
∫

d4x(−g)1/2CλµνκC
λµνκ (as then rewritten using the Gauss-Bonnet theo-

rem) together with the Maxwell action, and take note of the fact that this
procedure did not generate the Einstein-Hilbert action. With the Maxwell
action being invariant under Aµ(x) → Aµ(x) + ∂µβ(x) and with the con-

formal gravity action being invariant under gµν(x) → e2α(x)gµν(x) (see e.g.
[1]), the conformal gravity action thus serves as the gravitational analog of
the Maxwell action, and in the following we shall thus use local conformal
invariance as the principle with which to fix the structure of the gravitational
action. In so doing we see that gravity can be generated by gauging the full
conformal symmetry of the light cone.

Given the assumption of local conformal invariance, we find that the
conformal gravity action IW = −αg

∫

d4x(−g)1/2CλµνκC
λµνκ is the unique

gravitational action that is invariant under the local transformation gµν(x) →
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e2α(x)gµν(x), with the gravitational coupling constant αg being dimension-
less. Because the coupling constant αg is dimensionless, the conformal theory
is power-counting renormalizable, and thus if we did not include an initial
∫

d4x(−g)1/2CλµνκC
λµνκ term in the action, we would anyway generate one

as a renormalization counter-term. Because the variation of the conformal ac-
tion leads to fourth-order equations of motion, it had long been thought that
the theory would not be unitary. However, as we describe in Sec. (5), Bender
and Mannheim [3,4] have recently shown that one can find a realization of
the theory that is unitary. Consequently, conformal gravity is to be regarded
as a bona fide quantum gravitational theory. Moreover, the similarity of the
theory to Maxwell theory also carries over to the generation of a macroscopic
classical limit starting from a microscopic quantum field theory. Specifically,
in just the same way as the classical Maxwell equations emerge from the
quantum Maxwell equations as matrix elements of the quantum fields in
states containing an indefinite number of photons, because of its renormal-
izability the same will happen for conformal gravity in states containing an
indefinite number of gravitational quanta, with both the quantum theory and
its macroscopic classical limit obeying the equation of motion given in (11).
Consequently, in the following we will be able to use (11) to study both the
microscopic zero-point fluctuation problem and the macroscopic behavior of
the theory on astrophysical distance scales.

The non-renormalizable Einstein-Hilbert action is expressly forbidden by
the conformal symmetry because Newton’s constant carries an intrinsic di-
mension. However, as noted above, this does not prevent the theory from
possessing the Schwarzschild solution and Newton’s law of gravity. In ad-
dition, the same conformal symmetry forbids the presence of any intrinsic
cosmological constant term as it carries an intrinsic dimension too; with con-
formal invariance thus providing a very good starting point for tackling the
cosmological constant problem.

Now we recall that the fermion and gauge boson sector of the standard
SU(3)×SU(2)×U(1) model of strong, electromagnetic, and weak interactions
is also locally conformal invariant since all the associated coupling constants
are dimensionless, and gauge bosons and fermions get masses dynamically via
spontaneous symmetry breaking. Other than the Higgs sector (which we shall
shortly dispense with), the standard model Lagrangian is devoid of any intrin-
sic mass or length scales. And with its associated energy-momentum tensor
serving as the source of gravity, it is thus quite natural that gravity should be
devoid of any intrinsic mass or length scales too. Our use of conformal grav-
ity thus nicely dovetails with the standard SU(3)×SU(2)×U(1) model. To
tighten the connection, we note that while the standard SU(3)×SU(2)×U(1)
model is based on second-order equations of motion, an electrodynamics La-
grangian of the form Fµν∂α∂

αFµν would be just as gauge and Lorentz in-
variant as the Maxwell action, and there is no immediate reason to leave
any such type of term out. Now while an Fµν∂α∂

αFµν theory would not
be renormalizable, in and of itself renormalizability is not a law of nature
(witness Einstein gravity). However, such a theory would not be conformal
invariant. Thus if we impose local conformal invariance as a principle, we
would then force the fundamental gauge theories to be second order, and



8

thus be renormalizable after all. However, imposing the same symmetry on
gravity expressly forces it to be fourth order instead, with gravity then also
being renormalizable. As we see, renormalizability is thus a consequence of
conformal invariance.

Now if the underlying theory is to be locally conformal invariant, there
would be no place for a fundamental Higgs field with its tachyonic double-
well potential. Instead, mass scales would have to be generated dynamically
in the vacuum via dynamical fermion bilinear condensates. The elimination
of a fundamental Higgs field has an immediate benefit – one no longer has to
deal with the uncontrollable cosmological constant contribution it produces
when it acquires a non-vanishing expectation value. However, one still has
to make contact with the standard model, and one would thus want to ob-
tain a standard model Lagrangian with some effective scalar field. Such an
effective scalar field would have to emerge as a Ginzburg-Landau c-number
order parameter, i.e. as the matrix element of a fermion bilinear operator
in some possibly spacetime-dependent coherent state. Such an effective c-
number scalar field would not be observable in an accelerator.

To see what such an effective theory might look like, we note that if
the fermion acquires a mass parameter M(x) by some dynamical symmetry
breaking mechanism, the associated Hartree-Fock mean-field action would
take the same form as given in (15), only with a mass term added, viz.

IM = −

∫

d4x(−g)1/2ψ̄(x)γµ(x)[i∂µ + iΓµ(x) +Aµ(x) +M(x)]ψ(x). (17)

Evaluating the logarithmically divergent part of the same
∫

Dψ̄Dψ exp(iIM)
path integral as before only with (17) this time generates the same IEFF as
in (16), while adding on the mean-field action [2] (as written here using the
sign convention employed in this paper for Rα

α):

IMF =

∫

d4x(−g)1/2C

[

−M4(x) +
1

6
M2(x)Rα

α − gµν∂
µM(x)∂νM(x)

]

.

(18)
Here C is the same logarithmically divergent constant as before. Finally, if
we give M(x) a group index, the same procedure would cause the ∂µM(x)
terms to be replaced by covariant gauge derivatives (see [5,6]), and would
yield

IMF =

∫

d4x(−g)1/2C

[

−M4(x) +
1

6
M2(x)Rα

α

− gµν(∂
µ + iAµ(x))M(x)(∂ν − iAν(x))M(x)

]

. (19)

When (19) is taken in conjunction with (16), a conformally coupled standard
model emerges, but with a c-number scalar parameter M(x) that is not
a fundamental field. In Secs. (7) and (8) we will show how such a mass
parameter M(x) could be generated as a fermion bilinear condensate in a
conformal invariant theory. And in [7] we explore the degree to which the
existence of such a c-number order parameterM(x) necessitates the existence
of an accompanying dynamical bound state scalar particle.
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4 Quantization of gravity through coupling

In trying to find solutions to the conformal theory, we note that given the
lack of any intrinsic mass or length scales in the conformal action, without
dynamical generation of such scales there could be no non-trivial solutions
to the theory. Thus if all mass and length scales are to come from dynamics,
and all such mass-generating dynamics is to be quantum-mechanical (c.f. no
fundamental Higgs fields), the only allowed geometry in purely classical con-
formal gravity would be one with no curvature at all, viz. a geometry that
is Minkowski. (For there to be any curvature one needs some length scale to
characterize it.) Thus if one takes Wµν to be a classical fourth-order deriva-
tive function, then even though one could readily find an exterior vacuum
solution to Wµν = 0 such as the Ricci-flat one given in (5) and (6), there
would be no basis for taking the dimensionful parameter β to be non-zero
since the theory is as yet scale free. For the solution to a differential equa-
tion to have lower symmetry than the equation itself it (i.e. for a solution to
contain symmetry-breaking integration constants that are not present in the
equation itself), there has to be a spontaneous breakdown of the symmetry.
If all symmetry breaking is to be quantum-mechanical, then in the absence of
quantum mechanics, geometry would have to be flat. Thus, if the mass that
appears in the Schwarzschild radius of a source is quantum-mechanically
generated, then the curvature produced by that mass is ipso facto due to
quantum mechanics too.

The above remarks require some clarification since in classical electrody-
namics one can construct plane wave solutions with k0 = |k̄| even though
the classical Maxwell equations are conformal invariant. Specifically, if we
have a free classical Maxwell action

∫

d4xFµνF
µν in flat spacetime, the as-

sociated homogeneous wave equation takes the form (∂2t −∇2)Aµ(x) = 0 (in
the convenient Lorentz gauge). However, while this equation has Aµ(x) =
ǫµ(x) exp(−ik · x) as a solution, this solution involves a dimensionful four-
vector momentum kµ that is not present in the equation of motion itself.
Hence some mechanism is required to generate such a four-momentum. In
classical Maxwell theory the mechanism for doing this is not from the Fµν

sector of the theory at all, but rather via the introduction of a localized
source Jµ(x). In the presence of the source the solution to the inhomoge-
neous (∂2t − ∇2)Aµ(x) = Jµ(x) is given as Aµ(x) =

∫

d4x′D(x − x′)Jµ(x
′)

whereD(x−x′) is the massless retarded propagator. NowD(x) = δ(t−r)/4πr
itself is written entirely in terms of the spacetime coordinates and contains no
fundamental scales. Rather, the scales reside in the localized Jµ(x), and if it
for instance oscillates with a specific frequency, then the resulting Aµ(x) will
oscillate with that same frequency too. However, for Jµ(x) to be localized
and possess such an oscillation frequency, it would not be scale invariant.
Hence the classical Maxwell field only possesses frequency scales because the
sources to which it couples are taken to possess them, and the sources them-
selves can only possess such scales if they are not scale invariant. However,
if all the particles contained in electromagnetic sources are to acquire length
scales quantum-mechanically, then there could be no fundamental classical
electromagnetic sources that could possess such length scales in the first



10

place. Classical electromagnetism with localized oscillating sources is thus a
macroscopic manifestation of an underlying microscopic quantum Maxwell
theory in which scales are generated dynamically. In a truly scale-free classi-
cal electrodynamics there could not be any electromagnetic waves. Thus just
like gravity, the same conformal invariance will not permit electromagnetic
sources to have any nontrivial intrinsically classical component either, with
such sources being intrinsically quantum-mechanical.

If momentum modes are not to arise in classical physics, one needs to ask
how it is that they then do arise. To this end we note that as well as generating
mass scales via dynamics, there is another way in which quantum mechanics
produces scales, namely via the quantization procedure itself. Specifically,
scales are introduced via canonical commutation relations, with the generic
equal-time commutation relation [φ(x̄, t), π(x̄′, t)] = ih̄δ3(x̄− x̄′) for instance
being a non-linear relation that introduces a scale δ3(x̄− x̄′) everywhere on
a spacelike hypersurface. Since we can set δ3(x̄− x̄′) = (1/8π3)

∫

d3k exp(ik̄ ·
(x̄ − x̄′)), this is equivalent to introducing a complete basis of momentum
modes, with momentum modes thus being intrinsically quantum mechanical.
And indeed it is the very existence of this set of modes that gives rise to the
zero-point energy density and pressure of a quantized field that we discuss
in the following. Moreover, a quantized field will have a zero-point energy
density and pressure even when it is massless, i.e. even in the absence of mass
generation. Then, when there is mass generation, the momentum modes will
obey the k20 = k̄2 + m2/h̄2 mass condition and cause the massless theory
zero-point energy density and pressure to readjust. And as we show in Secs.
(7) and (8), this readjustment will cancel the cosmological constant that is
induced by the same mass generation mechanism.

Given the above remarks, we see that in conformal gravity we should
expand the metric as a power series in Planck’s constant rather than as a
power series in the gravitational coupling constant, with the zeroth-order
term in the expansion being flat. Consequently, in the theory there is no
intrinsic classical gravity, with the equations that are to be used for macro-
scopic systems being associated with matrix elements of the quantum fields
in states with an indefinite number of gravitational quanta, Since there is
to be no intrinsic classical gravity, there could not be any classical black
holes. While conformal gravity thus eliminates the classical gravity singular-
ity problem, and thus simultaneously eliminates the need to have to make
such classical singularities compatible with quantum mechanics, it remains
to be seen whether the theory might still generate geometric singularities
through quantum-mechanical effects, though one might anticipate that the
uncertainty principle might spread sources out enough to prevent this from
happening.

Even with the requirement that the metric be expanded as a power series
in Planck’s constant, quantization of gravity can still not follow the standard
canonical quantization prescription that is used for other fields. Specifically,
for a matter field one obtains its equation of motion by varying the matter
action with respect to the matter field, but one obtains its energy-momentum
tensor T µν

M by instead varying the matter action with respect to the metric.
Since T µν

M involves products of matter fields at the same point, a canoni-
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cal quantization of the matter field then gives the matter energy-momentum
tensor a non-vanishing zero-point contribution. However, in a standard quan-
tization procedure for a given matter field, the non-vanishing of T µν

M violates
no constraint since one does not simultaneously impose the equation of mo-
tion of any other field. Thus for a given matter field one does not require
stationarity with respect to the metric, with T µν

M thus not being constrained
to vanish.

In contrast however, for gravity the relevant field is the metric itself. If
we define the variation of the gravitational action with respect to the metric
to be a quantity T µν

GRAV , the gravitational equation of motion is then given
by T µν

GRAV = 0.2 Then, with T µν
GRAV containing products of fields at the same

point, a canonical quantization of the gravitational field would give a zero-
point contribution to T µν

GRAV , and thus violate the stationarity condition
T µν
GRAV = 0 that T µν

GRAV has to obey. Hence, unlike the matter fields for
which there is no constraint on T µν

M in the absence of any coupling of matter
to gravity, gravity itself is always coupled to gravity, with its stationarity
condition not permitting it to consistently be quantized on its own.

Despite this, we note that if we impose a stationarity condition with
respect to the metric not on the gravity piece or the matter piece alone, but
on their sum as given by the total IUNIV of the universe introduced in (9),
we then obtain

T µν
UNIV = T µν

GRAV + T µν
M = 0. (20)

In this case it now is possible to quantize gravity consistently, with T µν
GRAV

now being able to be non-zero provided gravity is coupled to some quan-
tized matter field source for which T µν

M is non-zero. Thus gravity can only be
quantized consistently if it is coupled to a quantized matter field. However, in
order for the cancellation required of the total T µν

UNIV to actually take place,
the quantization condition imposed on the gravitational sector commutation
relations would have to be fixed by the quantization condition in the matter
sector in order to enforce T µν

GRAV = −T µν
M , with each term being intrinsically

quantum-mechanical. Consequently, gravity is not only quantized though its
coupling to quantized matter, its commutation relations are explicitly deter-
mined by that coupling, with gravity needing no independent quantization
of its own. Finally, we note that not only do the matter fields quantize grav-
ity, the vanishing of T µν

UNIV entails that the gravity field and the matter field
zero-point fluctuations must cancel each other identically. In Secs. (6), (7)
and (8) we explore this point in detail.

2 In S. Weinberg, Gravitation and Cosmology: Principles and Applications
of the General Theory of Relativity (Wiley, New York, 1972) and also in
P. D. Mannheim, Phys. Rev. D 74, 024019 (2006) it is suggested that one treat
the functional variation of the gravitational action with respect to the metric as
the energy-momentum tensor of gravity. Specifically it was noted that if in Einstein

gravity one perturbs the Einstein equations around some background g
(0)
µν accord-

ing to gµν = g
(0)
µν + hµν , the first-order term in hµν gives the wave equation obeyed

by hµν , while the term that is quadratic in hµν is both covariantly conserved with
respect to the background metric and gives the energy density carried by a gravity
wave. In Sec. (6) below we provide an equivalent analysis in the conformal case.
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5 Unitarity via PT symmetry

When the Wµν tensor given in (12) is linearized around a flat spacetime
background with metric ηµν according to gµν = ηµν + hµν , it is found [7] to
be a function of the traceless quantity Kµν = hµν − (1/4)ηµνηαβh

αβ . In the
convenient transverse gauge ∂µK

µν = 0, the first order term in Wµν is found
to take the simple form

Wµν(1) =
1

2
(∂α∂

α)2Kµν , (21)

while the second order term in the conformal action IW given in (9) takes
the form

IW(2) = −
αg

2

∫

d4x∂α∂
αKµν∂β∂

βKµν . (22)

Since there is no mixing of components of Kµν in either (21) or (22), one can
explore the unitarity structure of the theory by working with an analog one-
component scalar field theory. As such, the condition Wµν(1) = 0 is one of a
broad class of fourth-order equations of motion that have been encountered
in the literature, and all of them can be associated with the generic scalar
action

IS = −
1

2

∫

d4x
[

∂µ∂νφ∂
µ∂νφ+ (M2

1 +M2
2 )∂µφ∂

µφ+M2
1M

2
2φ

2
]

. (23)

Given this action one obtains an equation of motion

(−∂2t + ∇̄2 −M2
1 )(−∂

2
t + ∇̄2 −M2

2 )φ(x) = 0, (24)

a propagator

D(k,M1,M2) =
1

(M2
2 −M2

1 )

(

1

k2 +M2
1

−
1

k2 +M2
2

)

, (25)

and an energy-momentum tensor with (0, 0) component

T00(M1,M2)

= π0φ̇+
1

2

[

π2
00 + (M2

1 +M2
2 )(φ̇

2 − ∂iφ∂
iφ) −M2

1M
2
2φ

2 − πijπ
ij
]

,(26)

where

πµ =
∂L

∂φ,µ
− ∂λ

(

∂L

∂φ,µ,λ

)

= −(M2
1 +M2

2 )∂
µφ+ ∂λ∂

µ∂λφ,

πµλ =
∂L

∂φ,µ,λ
= −∂µ∂λφ. (27)

These equations immediately possess two well-known realizations that
exhibit the problems that higher-derivative theories are thought to possess.
If one takes the contour for the k0 integration in the propagator to be the
standard Feynman one in which all positive energy modes propagate for-
ward in time and all negative energy modes propagate backwards in time,
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because of the relative minus sign in (25), one finds that some of the poles
have the negative residues that occur in an indefinite metric Hilbert space.
To avoid such negative residues, one can find [4] an alternate contour in
which the residues of all poles are positive but in which some of the nega-
tive energy modes propagate forward in time. While one can quantize this
realization with a standard Dirac norm, as the presence of the −M2

1M
2
2φ

2

term in T00(M1,M2) indicates, in this case the energy eigenvalue spectrum
is unbounded from below.

With neither of these two possibilities being palatable, higher-derivative
theories have long been regarded as being unphysical. However, recently Ben-
der and Mannheim revisited the issue [3,4] and found a third realization of
the theory in which the energy spectrum is bounded from below and there are
no negative Hilbert space norms at all. With the appropriate scalar product
for a Hilbert space being determined by boundary conditions, to determine
the relevant scalar product one needs some asymptotic information. To this
end Bender and Mannheim studied the eigenvalue problem for the Hamil-
tonian H =

∫

d3xT00(M1,M2) in the sector of the theory where the energy
eigenvalue spectrum is bounded from below, and found that the associated
wave functions were not normalizable on the real axis. In consequence of this,
the Hamiltonian of the system could not be Hermitian. However, the wave
functions were found to be normalizable on the imaginary axis, and thus
the field φ would have to be anti-Hermitian rather than Hermitian, with the
−M2

1M
2
2φ

2 term in T00(M1,M2) then being bounded from below. In addition
they noted that if they constructed a path integral for the system, it would
not exist with real φ but would be well-defined if φ were pure imaginary. So
again, one needs to take φ to be an anti-Hermitian operator.

Now if a Hamiltonian is not Hermitian, one is immediately concerned
that its eigenvalues might not all be real. However, while Hermiticity im-
plies reality of eigenvalues, there is no converse theorem that says that a
non-Hermitian Hamiltonian must have complex eigenvalues. Consequently,
Hermiticity is only sufficient for reality but not necessary. Recently, as part
of the general PT symmetry program that has been developed by Bender and
collaborators [8] a necessary condition for reality has been found, namely that
a Hamiltonian have a PT symmetry where P is a linear operator and T is
an antilinear one. Specifically, it was shown in [9] that if a Hamiltonian is
PT invariant the secular equation |H−λI| = 0 that determines the eigenval-
ues is real. Then in [10] the converse was shown, namely that if the secular
equation is real, the Hamiltonian must have a PT symmetry. Consequently,
the energy eigenspectrum of a Hamiltonian that is not PT symmetric must
contain some complex eigenvalues.

Noting now that all the poles in the propagator given in (25) lie on the
real axis, we see that the Hamiltonian for the fourth-order theory while not
Hermitian must instead be PT symmetric. For such Hamiltonians one can
construct a norm, the so-called CPT norm of PT theories [8], that obeys uni-
tary time evolution. For our purposes here we note that for a non-Hermitian
Hamiltonian H that has a completely real energy eigenspectrum, H and H†

must be related by a similarity transform of the form

V HV −1 = H†. (28)
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Thus if H has a right-eigenvector according to H |R〉 = E|R〉 with real E, its
conjugate will obey 〈R|H† = 〈R|E and will not be a left-eigenvector of H .
Rather, the state 〈L| defined as 〈L| = 〈R|V will be a left-eigenvector of H
since it obeys

〈L|H = 〈L|E. (29)

In this case it will be the norm 〈L|R〉 = 〈R|V |R〉 that will obey unitary time
evolution since it evolves as

〈L(t)|R(t)〉 = 〈L(t = 0)|eiHte−iHt|R(t = 0)〉 = 〈L(t = 0)|R(t = 0)〉. (30)

Thus we see that the needed scalar product is the overlap of a left-eigenvector
with a right-eigenvector and not the overlap of a right-eigenvector with its
own conjugate. Moreover, in [11] it was shown that the existence of a V
that can connect H and H† according to VHV −1 = H† is a necessary and
sufficient condition for both the existence of a PT symmetry and for the ex-
istence of a unitary scalar product, with the scalar product then being of the
form 〈L|R〉 = 〈R|V |R〉. The existence of a PT invariance for a Hamiltonian
is thus a necessary and sufficient condition for unitary time evolution.

When these PT ideas are applied to the fourth-order propagator, it is
found [4,7] that the relative minus in it is no longer associated with an
indefinite metric at all. Rather, it is associated with V operator, with the
completeness relation being given by Σ|n〉〈n|V = I and not by the negative
norm Σ|n〉〈n| − Σ|m〉〈m| = I. Finally, the propagator itself is found to be
given by the Green’s function 〈ΩL|T (φφ)|ΩR〉 = 〈ΩR|V T (φφ)|ΩR〉 rather
than by the familiar 〈ΩR|T (φφ)|ΩR〉. As we see, the unitarity problem for
fourth-order propagators only arose because one wanted to represent them
as 〈ΩR|T (φφ)|ΩR〉. Once one recognizes that the left vacuum need not be
the conjugate of the right vacuum unitarity can then readily be achieved.

Now while the above discussion was developed for the general second- plus
fourth-order action given in (23), for the conformal case given in (21) we are
interested in a pure fourth-order theory alone where the propagator is given
by D(k) = 1/k4 (a propagator whose poles again are all on the real axis).
Since the reduction to a pure fourth-order theory would require setting both
M2

1 and M2
2 equal to zero in (23), we see that because of the 1/(M2

2 −M2
1 )

prefactor in (25), the limit is singular. In consequence, the limit is a quite
unusual one in which the Hamiltonian becomes a non-diagonalizable, Jordan-
block Hamiltonian [4,7], with some of the states that had been eigenstates
being replaced by non-stationary ones. The very fact that the Hamiltonian is
not diagonalizable immediately confirms that it could not be Hermitian, just
as we had noted above. In this case even though the set of energy eigenstates
is not complete, the set of stationary plus non-stationary states combined
is complete [4], with time evolution of packets built out of the two classes
of states combined being unitary [4]. The unitarity of the pure fourth-order
conformal gravity theory is thus established.

As we thus see, in order to establish unitarity for fourth-order theories we
need the field φ(x), and thus gµν(x) itself, to be anti-Hermitian rather than
Hermitian. Now this is not how one ordinarily thinks about the gravitational
field, since one would presuppose that it, above all fields, should have a real
classical limit. Nonetheless, having an anti-Hermitian gravitational field is is
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not in conflict with anything that is actually known about gravity. Specifi-
cally, in [4] it was noted that if one replaces gµν by igµν (and thus gµν by
−igµν) neither the Christoffel symbols that appear in geodesics nor Rλ

µνσ

would be affected at all. In four space-time dimensions det(gµν) would not
be affected either. Even though Riemann tensor contractions could generate
factors of i, all such factors could be absorbed by redefining the overall mul-
tiplicative coefficients in the action (and likewise for the ds2 = gµνdx

µdxν

line element). Hence, current gravitational measurements cannot distinguish
between a purely real or a purely imaginary gravitational field. And as we
have seen, once one takes the gravitational field to be anti-Hermitian, one
can construct a consistent, renormalizable and unitary theory of quantum
gravity. And perhaps the problems that beset quantum gravity have arisen
because one wanted the gravitational field to be Hermitian.

6 The zero-point problem

In current applications of standard gravity to macroscopic astrophysical and
cosmological systems, one treats gravity itself as being purely classical. How-
ever, one cannot treat its matter source that way too since there are some in-
trinsically quantum-mechanical sources that are significant macroscopically.
Thus, white dwarf stars are stabilized by the Pauli degeneracy pressure of
the electrons in the star, and black-body radiation contributes to cosmic
expansion.3 To couple these particular effects to classical gravity, both of
them are taken to be described as ensemble averages over an appropriate set
of positive-energy Fock space states. However, while the Fock space states
would be eigenstates of a Hamiltonian of the generic formΣh̄ω(a†a+1/2), the
infinite Σh̄ω/2 zero-point contribution is ignored, i.e. one takes the Hamilto-
nian to be of the truncated form Σh̄ωa†a instead. Now in flat space one is free
to discard the zero-point term (say by a normal ordering prescription) since
in flat space one can only measure energy differences. However the hallmark
of gravity is that it couple to energy density itself and not to energy density
difference, and so discarding anything to which gravity couples would require
justification.

Since one would have to cancel infinities in the matter field energy-
momentum tensor T µν

M if the gravitational effects that occur in standard
gravity are to be finite, some mechanism needs to be identified that would
effect the cancellation. An immediate mechanism that might achieve this
would be a cancellation between appropriately chosen matter fields, since
bosons and fermions contribute to T µν

M with opposite signs. In fact such a
cancellation will occur if there is an exact supersymmetry between fermions
and bosons. However, once the fermion-boson mass degeneracy is broken, the
cancellation is lost. With the non-observation to date of any of the requisite

3 The Chandrasekhar mass limit MCH ∼ (h̄c/G)3/2/m2
p for white dwarfs and

the Stefan-Boltzmann constant σ = 2π5k4B/15c
2h̄3 for black-body radiation both

intrinsically depend on h̄. Both of these parameters would expressly have to appear
in the macroscopic gravitational equations of motion, and for neither of them could
one set h̄ to zero.
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superpartners, we know that the supersymmetry breaking scale must be at
least in the TeV region, with the uncanceled zero-point energy then being
huge.

Nonetheless, the generic idea of a boson-fermion cancellation as enforced
by some symmetry still makes sense since fermions and bosons generate vac-
uum energies with opposite signs no matter what the theory. To take advan-
tage of this, we note that the treatment of standard gravity described above
is deficient in one rather serious regard, namely it ignores the effect of quan-
tum mechanics on gravity itself. And as soon as one quantizes gravity, gravity
itself will acquire a zero-point contribution. Since gravitational quanta are
bosonic, under certain circumstances they may then be able to provide the
needed cancellation. Specifically, for such a cancellation to occur one needs
three things: a quantum gravity theory that makes sense, a symmetry, and
the presence of fermions in the matter field sector. With conformal gravity
meeting all of these criteria (as noted above fermions are its building blocks),
in the following we will explore its implications for the vacuum energy prob-
lem. We will see that when the conformal symmetry is unbroken the needed
cancellation does in fact occur. And then, unlike the supersymmetry situa-
tion, the cancellation will be maintained even after the conformal symmetry
is spontaneously broken and a cosmological constant term is induced.

One of the challenges that gravity theory faces is that zero-point and
cosmological constant contributions already occur for matter fields in flat
spacetime, i.e. they occur in the absence of gravity. Since gravity is not in-
volved in flat space physics, it is very difficult for gravity to then resolve
any problem that it is not responsible for. To enable gravity to resolve such
problems we need to put the gravitational field an equal footing with the
matter fields. This we can do if there are no intrinsic classical contributions
in either the gravitational or the matter sectors and all physics is quantum
mechanical, i.e. precisely as conformal symmetry requires. Since the lowest
order quantum-mechanical contribution to T µν

M is a zero-point contribution of
order h̄, to cancel it through the vanishing of the total T µν

UNIV given in (20), we
will need the lowest non-trivial gravitational term to be of order h̄ too. Since
the zero-point contribution is due to products of fields at the same point, the
order h̄ gravitational zero-point must involve a product of two gravitational
fields and thus be given by the second-order −4αgW

µν(2) (≡ T µν
GRAV) tensor

that is obtained by varying the IW(2) term in (22). To this order in h̄ we
only need to evaluate T µν

M in a flat background. It will then generate an order

h̄ curvature, with the order h̄2 term in T µν
M then being curvature dependent.

Moreover, with T µν
UNIV vanishing not only in lowest order but in all orders

if both the gravitational and matter field sectors are renormalizable (i.e. in
a renormalizable theory (20) is an all-order identity), the zero-point cancel-
lation will occur to all orders. Thus if we decompose T µν

GRAV and T µν
M into

finite and divergent parts according to T µν
GRAV = (T µν

GRAV)FIN + (T µν
GRAV)DIV,

T µν
M = (T µν

M )FIN + (T µν
M )DIV, (20) will decompose into

(T µν
GRAV)DIV + (T µν

M )DIV = 0, (31)

and
(T µν

GRAV)FIN + (T µν
M )FIN = 0. (32)



17

With (31) we see that all gravitational and matter field infinities cancel
each other identically, with (T µν

GRAV)DIV and (T µν
M )DIV regulating each other.

Given this regulation, there is no need to renormalize either of the two terms
as their sum is finite, and thus no renormalization anomaly such as the con-
formal anomaly is generated.4 And with all infinities having been removed,
(32) provides us with a completely finite framework for calculating gravita-
tional effects. Thus in (31) we take care of the Σh̄ω/2 type terms, and in
(32) we are free to use the Σh̄ωa†a type terms alone.

With Wµν(2) being of order h̄, the gravitational fluctuation Kµν must

itself be of order h̄1/2, and since the lowest non-trivial term in T µν
M is of

order h̄, it must be the case that Wµν(1) in (21) vanish identically. While
the vanishing ofWµν(1) provides us with a wave equation, the situation is not
quite the same as the one that occurs when one expands in a power series
in the gravitational coupling constant. Specifically, in that case the first-
order fluctuation term on the gravitational side is produced by a first-order
fluctuation term on the matter side, so that the gravitational fluctuation
would obey an inhomogeneous wave equation with a source. In contrast,
in the conformal case the first-order gravitational wave equation is strictly
homogeneous on all scales. Then, since this equation is homogeneous, in and
of itself it does not force Kµν to be non-zero. However, since the order h̄
contribution to T µν

M is non-zero, −4αgW
µν(2) cannot vanish, and thus Kµν

cannot vanish either. It is thus quantization of the matter field that forces the
gravitational field to be quantized, with the condition−4αgW

µν(2)+T µν
M = 0

fixing the strength of the commutator terms present in the second order
Wµν(2). With the matter field fixing the strength of the gravitational sector,
the cancelation of both zero-point contributions and conformal anomalies is
secured.

To see how things work in detail we consider conformal gravity coupled
to a Dirac fermion. To the order h̄ of interest to us we can take the fermion
to be a free massless fermion in flat spacetime. In this case the matter field
energy-momentum tensor is given by T µν

M = ih̄ψ̄γµ∂νψ, with its vacuum
expectation value being given by

〈Ω|T µν
M |Ω〉 = −

2h̄

(2π)3

∫ ∞

−∞

d3k
kµkν

ωk
, (33)

where kµ is a lightlike 4-vector kµ = (ωk, k̄) with ωk = |k̄|. In (33) we recog-
nize two separate infinite terms, one associated with ρM = 〈Ω|T 00

M |Ω〉 and the
other with pM = 〈Ω|T 11

M |Ω〉 = 〈Ω|T 22
M |Ω〉 = 〈Ω|T 33

M |Ω〉. Since the fermion
is massless, T µν

M is traceless and thus these two infinities obey ρM = 3pM.

4 If one did first renormalize each term separately, the associated conformal
anomalies would then have to cancel each other identically. Specifically, with the
vanishing of T µν

UNIV being due to stationarity with respect to the metric, such sta-
tionarity equally guarantees the vanishing of the trace gµνT

µν
UNIV without any need

to impose conformal invariance. Thus even though the vanishing of the individual
gravity sector and matter sector traces gµνT

µν
GRAV and gµνT

µν
M do require conformal

invariance, and even though conformal symmetry Ward identities might be violated
by renormalization anomalies, the vanishing of gµνT

µν
UNIV cannot be affected by the

lack of scale invariance of regulator masses. Any anomalies in gµνT
µν
GRAV + gµνT

µν
M

must thus all mutually cancel each other identically.
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Such an energy-momentum tensor could not be associated with a cosmolog-
ical constant term of the form −Ληµν since its trace is given by the non-zero
−4Λ, with the cosmological constant and zero-point fluctuation problems in
principle thus being different. Given its kµkν structure, the zero-point quan-
tity 〈Ω|T µν

M |Ω〉 can be written in the form of a perfect fluid with a timelike
fluid velocity vector Uµ = (1, 0, 0, 0), viz.

〈Ω|T µν
M |Ω〉 = (ρM + pM)UµUν + pMη

µν , (34)

with the fluid thus possessing both a zero-point energy density and a zero-
point pressure.5 Since gravity couples to the full T µν

M and not just to its (0, 0)
component, it is not sufficient to only address the vacuum energy density
problem, one has to deal with the vacuum pressure as well. There are thus
two vacuum problems that need to be addressed, and not just one. The
gravitational sector will thus need to cancel both the vacuum energy density
and the vacuum pressure of the matter field, and in a conformal theory
will readily be able to do so since −4αgW

µν(2) has an identical traceless
vacuum perfect fluid structure. (In a conformal invariant theory the variation
with respect to the metric of the pure gravitational sector of the action is
automatically traceless.)

For the explicit structure of the gravity sector we follow the discussion
given in [7]. On using some residual gauge symmetry the general solution to
Wµν(1) = 0 is given as

Kµν(x) =
h̄1/2

2(−αg)1/2

2
∑

i=1

∫

d3k

(2π)3/2(ωk)3/2

[

A(i)(k̄)ǫ(i)µν(k̄)e
ik·x

+ iωkB
(i)(k̄)ǫ(i)µν(k̄)(n · x)eik·x

+ Â(i)(k̄)ǫ(i)µν(k̄)e
−ik·x − iωkB̂

(i)(k̄)ǫ(i)µν(k̄)(n · x)e−ik·x

]

, (35)

as expressed in terms of quantum operators A(i)(k̄), Â(i)(k̄), B(i)(k̄) and

B̂(i)(k̄) and two transverse traceless polarization tensors ǫ
(i)
µν(k̄) (i = 1, 2),

both of which are normalized to ǫαβǫ
αβ = 1. Since Kµν is to not be Hermi-

tian, the creation operators are not the Hermitian conjugates of the annihila-
tion operators. However, in the following all that will matter is that A(i)(k̄)

and B(i)(k̄) annihilate the right vacuum while Â(i)(k̄) and B̂(i)(k̄) annihi-
late the left vacuum. With nµxµ being equal to −t, in (35) we recognize the
presence of non-stationary modes, which, as noted above, is characteristic of
theories with non-diagonalizable Hamiltonians.

5 Even though (33) involves terms that are infinite and thus not well-defined,
we note the perfect fluid form given in (34) can be established by integrating over
the direction of the 3-momentum vector k̄ alone, an integration that is completely
finite. A perfect fluid form for (33) can thus be established prior to the subse-
quent divergent integration over the magnitude of the momentum, with this latter
integration not bringing 〈Ω|T µν

M |Ω〉 to the form of a cosmological constant. Even
though (33) is not well-defined, for our purposes here the perfect fluid form given
in (34) is a very convenient way of summarizing the infinities in (33) that need to
be cancelled.
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As discussed in detail in [7], the quantization procedure is also character-
istic of non-diagonalizable Hamiltonians, with the commutators taking the
form

[A(i)(k̄), B̂(j)(k̄′)] = [B(i)(k̄), Â(j)(k̄′)] = Z(k)δi,jδ
3(k̄ − k̄′),

[A(i)(k̄), Â(j)(k̄′)] = 0, [B(i)(k̄), B̂(j)(k̄′)] = 0,

[A(i)(k̄), B(j)(k̄′)] = 0, [Â(i)(k̄), B̂(j)(k̄′)] = 0. (36)

In (36) everything except the possibly k = |k̄| dependent renormalization

constant Z(k) is fixed by kinematics (the vanishing of the [B(i)(k̄), B̂(j)(k̄′)]
commutator for instance is needed to cancel all nµxµ terms contained in
−4αg〈Ω|Wµν (2)|Ω〉). The constant Z(k), however, will be fixed by the dy-
namics, with the dynamics preventing Z(k) from being zero and the above
commutator algebra from being trivial. Specifically, given (36) we obtain

− 4αg〈Ω|Wµν(2)|Ω〉 =
2h̄

(2π)3

∫ ∞

−∞

d3k
Z(k)kµkν

ωk
, (37)

with the factor 2 appearing in (37) since we have to sum the standard bosonic
h̄ω/2 zero-point energy density per mode over two polarization states of two
separate families of massless spin 2 modes (the A(i)(k̄) and B(i)(k̄) sectors).
Then with the fermion sector generating a factor of −2 in (33) (the standard
fermionic −h̄ω zero-point energy density per mode as summed over negative
energy states with spin up and spin down) the cancellation of the fermionic
and gravitational contributions in −4αg〈Ω|Wµν (2)|Ω〉+ 〈Ω|T µν

M |Ω〉 = 0 will
enforce Z(k) = 1.

Establishing that Z is fixed by the coupling of gravity to the matter sector
is our key result as it shows that gravity requires no independent quantization
of its own, with its quantization strength being fixed by the consistency
condition that all zero-point infinities cancel identically. To appreciate the
point, it is of interest to take a more general matter source. Thus if we
take the source to contain M massless gauge bosons and N massless two-
component fermions (viz. N/2 four-component fermion modes), together they
will generate M − N units of h̄ωk for each k̄. (For gauge bosons one gets
+h̄ωk/2 for each of two helicity states.) In this case consistency requires that
Z be given by Z = (N − M)/2. This condition shows that Z cannot be
assigned in isolation. Rather it is determined by the dynamics each time.
Moreover since Z must be positive (c.f. no negative norm states) it also
provides an interesting constraint on model building, namely that N must be
greater than M . For the standard SU(3)×SU(2)×U(1) model for instance,
we have M = 12 gauge bosons and N = 16 two-component spinors per
generation, with Z then being positive. Intriguingly, for the grand-unified
gauge group SO(10) one hasM = 45 and again N = 16 per generation, with
three generations of fermions thus being the minimum number that would
make Z be positive in this case.

A second example of a dynamically determined renormalization constant
may be found in two spacetime dimensions (D = 2). With it being the
Einstein-Hilbert action that is conformally invariant in D = 2, to the order
h̄ of interest to us we thus couple D = 2 Einstein-Hilbert gravity (with
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1/2κ22 in place of 1/16πG) to a free D = 2 massless flat spacetime fermion.
Now in D = 2 the classical Einstein-Hilbert action is a total divergence (the
D = 2 Gauss-Bonnet theorem). Consequently, the associated Feynman path
integral is trivial and there is no quantum scattering. However, as noted in [7,
12], the theory is not completely empty. Specifically, due to quantum ordering
the quantum-mechanical Einstein-Hilbert action is a not a total divergence.
(Generically, A∂µB + B∂µA = ∂µ(AB) + [B, ∂µA].) In consequence of this
there are zero-point fluctuations in the gravity sector, just as needed to cancel
those in the fermion sector.

The specific D = 2 calculation parallels the D = 4 case with gravitational
fluctuations of the form gµν = ηµν + hµν being found to satisfy a massless
wave equation and with the components of hµν being related by the vanishing
of the trace ηµνh

µν . With the momentum modes being given by kµ = (ωk, k)
where ωk = |k|, the general solution to the wave equation is given by [7,12]

h00(x, t) = κ2h̄
1/2

∫

dk

(2π)1/2(2ωk)1/2

[

A(k)ei(kx−ωkt) + C(k)e−i(kx−ωkt)
]

= h11(x, t),

h01(x, t) = κ2h̄
1/2

∫

dk

(2π)1/2(2ωk)1/2

[

B(k)ei(kx−ωkt) +D(k)e−i(kx−ωkt)
]

.

(38)

On defining

〈Ω|[C(k), B(k′)]|Ω〉 = −〈Ω|B(k)C(k)|Ω〉δ(k − k′) = −fBC(k)δ(k − k′),

〈Ω|[A(k), D(k′)]|Ω〉 = 〈Ω|A(k)D(k)|Ω〉δ(k − k′) = fAD(k)δ(k − k′),

(39)

where k is the spatial component of kµ, which can be positive or negative, we
find that the order h̄ vanishing of T µν

GRAV + T µν
M then leads to the condition

k[fBC(k)− fAD(k)] = 4ωk = 4|k|, (40)

with fBC(k) − fAD(k) being an odd function of k. As we see, the matter
sector has again fixed the commutation relations for the gravitational field.

7 The cosmological constant problem in D = 2

In dynamical generation of fermion masses one has to change the vacuum
from the normal one |N〉 in which 〈N |ψ̄ψ|N〉 is zero to a spontaneously
broken one |S〉 in which 〈S|ψ̄ψ|S〉 is non-zero. Since (20) is an operator
identity it will hold in any state, and thus the cancellations required to
enforce 〈S|T µν

GRAV|S〉 + 〈S|T µν
M |S〉 = 0 must occur. To see how this ex-

plicitly comes about, it is instructive to consider a four-Fermi interaction
in two spacetime dimensions, as that is the dimension in which the four-
Fermi coupling constant g is dimensionless and the theory is conformal in-
variant. We introduce a flat spacetime four-Fermi action of the form IM =
−
∫

d2x[ih̄ψ̄γµ∂µψ − (g/2)(ψ̄ψ)2], with the energy-momentum tensor T µν
M =
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ih̄ψ̄γµ∂νψ − ηµν(g/2)[ψ̄ψ]2 being traceless in solutions to the equation of
motion, just as must be the case for conformal matter.

In the Nambu-Jona-Lasinio mean-field, Hartree-Fock approximation one
looks for self-consistent states |S〉 in which 〈S|ψ̄ψ|S〉 = im/g and 〈S|(ψ̄ψ −
im/g)2|S〉 = 0. In such states the fermion equation of motion takes the form
ih̄γµ∂µψ− imψ = 0 and the mean-field energy-momentum tensor T µν

MF takes
the form

〈S|T µν
MF|S〉 = 〈S|ih̄ψ̄γµ∂νψ|S〉+

m2

2g
ηµν , (41)

with the mean-field approximation preserving tracelessness.With the fermion
momentum modes being given by kµ = (ωk, k) where ωk = (k2 +m2/h̄2)1/2,
the quantity 〈S|ih̄ψ̄γµ∂νψ|S〉 evaluates to

〈S|ih̄ψ̄γµ∂νψ|S〉 = −
h̄

2π

∫ ∞

−∞

dk
kµkν

ωk
. (42)

In (42) we recognize mean-field energy density and pressure terms of the form

ρMF = −
h̄

2π

[

K2 +
m2

2h̄2
+
m2

2h̄2
ln

(

4h̄2K2

m2

)]

,

pMF = −
h̄

2π

[

K2 +
m2

2h̄2
−
m2

2h̄2
ln

(

4h̄2K2

m2

)]

, (43)

as conveniently cut-off at a momentum K that serves to characterize the
infinities involved. In the (m2/2g)ηµν term in (41) we recognize a mean-field
cosmological constant term ΛMF = −m2/2g, and with ΛMF evaluating to the
logarithmically divergent

ΛMF =
m2

4πh̄
ln

(

4h̄2K2

m2

)

, (44)

we obtain the gap equation m = 2h̄Keπh̄/g. (In dynamical symmetry break-
ing the induced cosmological constant is infinite rather than finite – it thus
appears in (T µν

M )DIV and not in (T µν
M )FIN.) In terms of ρMF, pMF and ΛMF

we can write the complete mean-field 〈S|T µν
MF|S〉 as

〈S|T µν
MF|S〉 = (ρMF + pMF)U

µUν + pMFη
µν − ΛMFη

µν . (45)

Since 〈S|T µν
MF|S〉 is traceless, the various terms in (45) must obey pMF −

ρMF − 2ΛMF = 0 (in D = 2), with all the various divergences canceling each
other in the trace, just as noted in [13,7]. Given this cancellation, we can
eliminate ΛMF and rewrite (45) in the manifestly traceless form

〈S|T µν
MF|S〉 =

(ρMF + pMF)

2
[2UµUν + ηµν ] ,

ρMF + pMF

2
= 〈S|T 00

MF|S〉 = −
h̄

2π

(

K2 +
m2

2h̄2

)

, (46)

with the logarithmic divergences associated with the readjustment of ρMF

and pMF in (43) from the massless to the massive case having completely
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disappeared. Finally, in order for gravity to now cancel 〈S|T µν
MF|S〉, we have

to replace (40) by

k[fBC(k)− fAD(k)] = 4

[

(k2 +m2/h̄2)1/2 −
m2

2h̄2(k2 +m2/h̄2)1/2

]

. (47)

Thus in the presence of dynamical symmetry breaking, even though the grav-
itational sector modes remain massless, the commutator renormalization con-
stants in (39) readjust and become dependent on the induced fermion mass,
with the renormalization constants thus being dependent on the choice of
vacuum. The emergence of a behavior such as this is completely foreign to
the standard canonical commutation prescription used for the matter fields,
and shows how different quantization for gravity has to be. Nonetheless, with
this readjustment, the vacuum cosmological constant term is completely can-
celled, with conformal gravity thus being able to control the cosmological
constant even after the conformal symmetry is broken.

8 The cosmological constant problem in D = 4

To generalize the D = 2 results to D = 4 is not immediate since in D = 4
the four-Fermi interaction is not conformal invariant. Rather one must work
in a conformal invariant theory, which in D = 4 means a gauge theory. Since
the renormalization procedure would introduce scaling anomaIies, to restore
scale symmetry to the gauge theory one needs to be at a renormalization
group fixed point. In such a case scaling would be restored but with anoma-
lous dimensions, something first noted by Johnson, Baker and Wiley [14] in
a study of (flat spacetime) quantum electrodynamics at a Gell-Mann-Low
eigenvalue for the fine structure constant. In a study of dynamical symmetry
breaking in this same theory it was found [15] if the dimension dθ = 3 + γθ
of the fermion composite bilinear θ = ψ̄ψ is reduced by one whole unit from
its canonical value of dθ = 3 to an anomalous value of dθ = 2, the vacuum
would then undergo dynamical symmetry breaking and generate a fermion
mass. Specifically, with the insertion of ψ̄ψ into the inverse fermion propa-
gator behaving as Γ̃θ(p, p, 0) = (−p2/M2)−1/2 at γθ = −1, it was found that
the four-Fermi value of ǫ(m, 4F) = (i/h̄)

∫

d4p/(2π)4TrLn(γµpµ − m + iǫ),
viz.

ǫ(m, 4F) = −
h̄

4π2

(

K4 +
m2K2

h̄2
−
m4

4h̄4
ln

(

4h̄2K2

m2

)

+
m4

8h̄4

)

, (48)

would change to

ǫ(m) =
i

h̄

∫

d4p

(2π)4
TrLn

[

γµpµ −m

(

−p2

M2

)−1/2

+ iǫ

]

= −
h̄K4

4π2
+
m2M2

16π2h̄3

[

ln

(

m2M2

16h̄4K4

)

− 1

]

. (49)
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On setting ǫ′(m) = m/g and M4 = 16h̄4K4exp(8π2h̄3/M2g), the mean-field
energy density ǫ(m)−m2/2g thus evaluates to

ǫ(m)−
m2

2g
= −

h̄K4

4π2
+
m2M2

16π2h̄3

[

ln

(

m2

M2

)

− 1

]

. (50)

Other than the m-independent quartically divergent term (which also oc-
curs in the gravity sector) the mean-field energy density is completely finite,
with a local maximum at m = 0 and global minima at m = ±M . With
the four-Fermi ǫ(m, 4F) given in (48) having mass-dependent terms that are
quadratically and logarithmically divergent, we see that improving the short
distance-behavior of ψ̄ψ by one whole unit, and thus that of ψ̄ψψ̄ψ by two
whole units, then brings the quadratic divergence down to logarithmic; with
the −m2/2g term then removing the logarithmic divergence, to produce the
finite terms in (50).6

At the minimum, (50) takes the form

ǫ(M)−
M2

2g
= −

h̄K4

4π2
−

M4

16π2h̄3
, (51)

in complete analog to (46). As required by (20), gravity must thus cancel the
whole of (51) in D = 4 just as it cancels the whole of (46) in D = 2. To this
end we note that the propagator S(p) = [γµpµ − m(−p2/M2)−1/2 + iǫ]−1

contained in (49) has poles, and they can be taken to be at p4 −m2M2 = 0
if we define the multiple-valued square root singularity appropriately. If we
do the p0 contour integration in (49) we will obtain poles at p2 = mM and
p2 = −mM . Recalling that 〈S|ψ̄ψ|S〉 = ǫ′(m), in analog to (33) we can set

ǫ(m)−
m2

2g
= −

2h̄

(2π)3

∫ ∞

−∞

d3k

[

(k2 +mM/h̄2)1/2 −
mM

4h̄2(k2 +mM/h̄2)1/2

+ (k2 −mM/h̄2)1/2 +
mM

4h̄2(k2 −mMh̄2)1/2

]

. (52)

Thus at the m =M minimum we obtain

ǫ(M)−
M2

2g
= −

2h̄

(2π)3

∫ ∞

−∞

d3k

[

(k2 +M2/h̄2)1/2 −
M2

4h̄2(k2 +M2/h̄2)1/2

+ (k2 −M2/h̄2)1/2 +
M2

4h̄2(k2 −M2/h̄2)1/2

]

. (53)

6 It was noted in [15] that a reduction in dynamical dimension of ψ̄ψψ̄ψ from six
to four would render the Nambu-Jona-Lasinio four-Fermi interaction theory non-
perturbatively renormalizable. In addition it was suggested that one could use such
a ψ̄ψψ̄ψ term as vacuum energy counter-term. Now since the QED study given in
[15] was a purely flat spacetime study, there one could of course, and indeed one
ordinarily does, remove the vacuum energy density by normal ordering. However,
once one couples the theory to gravity, one can no longer normal order away any
contribution to the energy density, and to obtain a finite vacuum energy density
one should instead use a four-Fermi counter-term. The dθ = 2 condition is thus seen
as not only serving to produce dynamical symmetry breaking in flat spacetime, but
also as serving to render zero-point fluctuations finite in curved spacetime.
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Comparing now with (37), we see that the cancellation of the fermionic and
gravitational contributions in −4αg〈S|W

µν(2)|S〉+ 〈S|T µν
M |S〉 = 0 will force

the gravitational sector renormalization constant Z(k) in (36) to obey

kZ(k) = (k2 +M2/h̄2)1/2 −
M2

4h̄2(k2 +M2/h̄2)1/2

+ (k2 −M2/h̄2)1/2 +
M2

4h̄2(k2 −M2/h̄2)1/2
, (54)

in complete analog to (47), with Z(k) again being determined by the dynam-
ics. (In (47) and (54) the numerical factor of 2 or 4 factor in the denominator
is the spacetime dimension.) Additionally we note that if we were to set
M = 0 in (54) we would obtain Z(k) = 2 rather than Z(k) = 1, since the
pole structure of the propagator S(p) is that of two 4-component fermions
rather than just one.

Having now obtained (53) and (54), we note that there is an alternate way
to derive the structure given in (53) and (54) that is instructive in its own
right. Since we are in a conformal theory we can treat the two sets of poles at
p2 =M2 and p2 = −M2 as though they were independent degrees of freedom
each with the traceless energy-tensor Tµν = iψ̄γµ∂νψ− (1/4)ηµνψ̄ψ required
in the broken symmetry case [1]. Recognizing T 00 = iψ̄γ0∂0ψ − (1/4)η00ψ̄ψ
to be in the generic form T 00 = ǫ(m)−(m/4)dǫ(m)/dm for a particle of mass
m, we recognize ǫ(M)− (M/4)dǫ(M)/d(M)+ ǫ(iM)− (iM/4)dǫ(iM)/d(iM)
as being none other than the right-hand side of (53).

9 The dark matter problem

Since conformal gravity is a well-defined, renormalizable quantum theory,
we can take matrix elements of (32) in states with an indefinite number of
gravitational quanta and obtain a completely finite macroscopic limit that
will be described by a classical version of (11). Classical conformal gravity
has been studied by Mannheim and Kazanas [16] who found that because of
the underlying conformal symmetry, the exact metric in a static, spherically
symmetry geometry can be brought to the form

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2dΩ2, (55)

where the metric coefficient B(r) obeys the the fourth-order equation

3

B(r)
(W 0

0 −W r
r) = ∇4B = B′′′′ +

4B′′′

r
=

(rB)′′′′

r

=
3

4αgB(r)
(T 0

0 − T r
r) ≡ f(r) (56)

without any approximation whatsoever. Exterior to a source of radius r0 the
solution to (56) is of the form

B(r > r0) = 1−
2β

r
+ γr, (57)
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with the matching of the interior and exterior solutions fixing the integration
constants in (57) according to

2β =
1

6

∫ r0

0

dr′r′4f(r′), γ = −
1

2

∫ r0

0

dr′r′2f(r′). (58)

Comparing with (5) and (6) we see that, as had been been noted above, we
do indeed recover the Schwarzschild solution, but in addition we see that we
obtain a linear potential, to thus give a departure from Newton-Einstein at
large distances, i.e. in precisely the region where the dark matter problem is
encountered.

Given (57), we see that a star would put out a weak gravity potential

V ∗(r) = −
β∗c2

r
+
γ∗c2r

2
(59)

per unit solar mass. In spiral galaxies the luminous matter at a radial distance
R from the galactic center is typically distributed with a surface brightness
Σ(R) = Σ0e

−R/R0 , with the total luminosity being given by L = 2πΣ0R
2
0. If

we assume that the mass distribution in a spiral galaxy is the same as that
of its luminous distribution (i.e. no dark matter), then for a galactic mass
to light ratio M/L, one can define the total number of solar mass units N∗

in the galaxy via (M/L)L = M = N∗M⊙. On integrating V ∗(r) over this
visible matter distribution, one finds that the net centripetal acceleration due
to the local luminous matter in the galaxy is given by [1]

v2LOC

R
=
N∗β∗c2R

2R3
0

[

I0

(

R

2R0

)

K0

(

R

2R0

)

− I1

(

R

2R0

)

K1

(

R

2R0

)]

+
N∗γ∗c2R

2R0
I1

(

R

2R0

)

K1

(

R

2R0

)

. (60)

Familiarity with Newtonian gravity would suggest that to fit galactic
rotation curve data in conformal gravity one should now apply (60) as is.
However there is a crucial difference between the two cases. For Newtonian
gravity one uses the second-order Poisson equation ∇2φ(r) = g(r) and ob-
tains a potential and force of the form

φ(r) = −
1

r

∫ r

0

dr′r′2g(r′)−

∫ ∞

r

dr′r′g(r′),
dφ(r)

dr
=

1

r2

∫ r

0

dr′r′2g(r′).

(61)
As such, the import of (61) is that even though g(r) could continue globally
all the way to infinity, the force at any radial point r is determined solely
by the material in the local 0 < r′ < r region. In this sense Newtonian
gravity is local in character, since to explain a gravitational effect in some
local region one only needs to consider the material in that region. Thus in
Newtonian gravity, if one wishes to explain the behavior of galactic rotation
curves through the use of dark matter, one must locate the dark matter where
the problem is and not elsewhere, i.e. within the galaxies themselves.
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However, this familiar property of Newtonian gravity is not generic to
any theory of gravity. In particular if we define h(r) = c2f(r)/2, the confor-
mal gravity potential associated with (56) will obey the fourth-order Poisson
equation ∇4φ(r) = h(r), with general solution

φ(r) = −
r

2

∫ r

0

dr′r′2h(r′)−
1

6r

∫ r

0

dr′r′4h(r′)−
1

2

∫ ∞

r

dr′r′3h(r′)

−
r2

6

∫ ∞

r

dr′r′h(r′)

dφ(r)

dr
= −

1

2

∫ r

0

dr′r′2h(r′) +
1

6r2

∫ r

0

dr′r′4h(r′)−
r

3

∫ ∞

r

dr′r′h(r′).(62)

As we see, this time we do find a global contribution to the force coming from
material in the r < r′ <∞ region that is beyond the radial point of interest.
Hence in conformal gravity one cannot ignore the rest of the universe, with
a test particle in orbit in a galaxy being able to sample both the local field
due to the matter in the galaxy and the global field due to the rest of the
matter in the Universe. Unlike Newtonian gravity then, conformal gravity is
an intrinsically global theory.

The contribution that the rest of the Universe provides consists of two
components, the homogeneous cosmological background and the inhomo-
geneities within it. The homogeneous background can be described by a
Roberston-Walker (RW) geometry, while large scale inhomogeneities are typ-
ically in the form of large gravitationally bound systems such as clusters and
superclusters. Since the RW metric is conformal to flat, and since the Weyl
tensor vanishes identically in a such a geometry, the cosmological background
is characterized by a geometry in whichWµν of (11) (and thus the cosmolog-
ical T µν

M ) vanish identically. However, since localized inhomogeneities have a
non-vanishing Weyl tensor, the inhomogeneities contribute to the integrals
in (62) that extend out to infinity beyond the galaxy of interest. The in-
homogeneities contribute to the particular integral solution to (11) given in
(62) (both ∇4B(r) and f(r) non-zero), while the homogeneous background
contributes to the complementary function (both ∇4B(r) and f(r) zero).

In order for the background cosmology to contribute non-trivially, we
note that even though we need the background T µν

M to vanish (since the RW
Wµν vanishes), we would need T µν

M to vanish non-trivially if it is to have
any content. As shown in [1], such a non-trivial vanishing can be achieved
by an interplay between the positive contribution of the matter sources (c.f.
Σh̄ωa†a) and the negative contribution of the gravitational field that occurs if
the 3-curvatureK of the Universe is negative, with gravity providing negative
energy density. In [1] it was shown that with such a cosmology one could then
fit the accelerating universe Hubble plot data without the need for any fine-
tuning of parameters or for any of the cosmological dark matter required in
the standard theory. (Unlike the standard ΩK = 0 cosmology, which is fine-
tuned to only accelerate at late redshift, with its negative K the conformal
cosmology naturally accelerates at all redshifts, to thereby lead [1] to a non
fine-tuned fit to the acccelerating Universe supernovae Hubble plot data.)

Since cosmology is written in comoving Hubble flow coordinates while
rotation curves are measured in galactic rest frames, to ascertain the impact
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of cosmology on rotation curves one needs to transform the RW metric to
static coordinates. As noted in [16], the transformation

ρ =
4r

2(1 + γ0r)1/2 + 2 + γ0r
, τ =

∫

dtR(t) (63)

effects the metric transformation

−(1 + γ0r)c
2dt2 +

dr2

(1 + γ0r)
+ r2dΩ2 =

1

R2(τ)

(

1 + γ0ρ/4

1− γ0ρ/4

)2 [

−c2dτ2 +
R2(τ)

[1− γ20ρ
2/16]2

(

dρ2 + ρ2dΩ2

)

]

. (64)

Recognizing (64) to be conformal to a topologically open RW metric with
3-curvature K = −γ20/4, and recalling that in metrics conformal to RW
the tensor Wµν still vanishes, we see that in the rest frame of a galaxy the
negativeK global cosmology found in [1] acts like a universal linear potential
with cosmological strength γ0/2 = (−K)1/2.

In the weak gravity limit one can add this global potential on to (60),
with the total centripetal acceleration then being given by [17]

v2TOT

R
=
v2LOC

R
+
γ0c

2

2
. (65)

In [17] (65) was used to fit the galactic rotation velocities of a sample of
11 spiral galaxies, and good fits were found, with the two universal linear
potential parameters being fixed to the values

γ∗ = 5.42× 10−41cm−1, γ0 = 3.06× 10−30cm−1. (66)

The value obtained for γ∗ entails that the linear potential of the Sun is so
small that there are no modifications to standard solar system phenomenol-
ogy, with the values obtained for N∗γ∗ and γ0 being such that one has to
go to galactic scales before their effects can become as big as the Newtonian
contribution.

However, as we had noted above, there is a contribution due to inho-
mogeneities in the cosmic background that we need to include too. These
inhomogeneities would typically be clusters and superclusters and would be
associated with distance scales between 1 Mpc and 100 Mpc or so. Without
knowing anything other than that about them, we see from (62) that for
calculating potentials at galactic distance scales (viz. scales much less than
cluster scales of order rclus) the inhomogeneities would contribute constant
and quadratic terms multiplied by integrals that are evaluated between end
points such as rclus that do not depend on the galaxy of interest, to thus be
constants. Thus, as noted in [18,19,20], we augment (65) to

v2TOT

R
=
v2LOC

R
+
γ0c

2

2
− κc2R, (67)

with asymptotic limit

v2TOT

R
→

N∗β∗c2

R2
+
N∗γ∗c2

2
+
γ0c

2

2
− κc2R, (68)
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where κ = (1/3c2)
∫∞

rclus
dr′r′h(r′). Armed with (67) Mannheim and O’Brien

[18,19,20] set out to extend the earlier 11 galaxy study of [17] to a total
sample of 138 galaxies that had become available in the interim (a varied
and broad sample that includes both high and low surface brightness galaxies
and dwarfs). In making such fits the only parameter that can vary from one
galaxy to the next is the galactic disk mass to light ratio as embodied in
N∗, with the parameters γ∗, γ0 and κ needing to be universal and not have
any dependence on a given galaxy at all. To model the contribution of the
luminous matter known photometric surface brightness data parameters and
HI gas data parameters were used. The fits are thus highly constrained, one
parameter per galaxy fits with all input data being known, with everything
else being universal, and with no dark matter being assumed.

Now since the κ-dependent term had not been used in the fits given in [17],
one would immediately expect that it would be too small to be significant.
However, because the 138 galaxy sample is so big, it contains galaxies whose
rotation velocity data go out to radial distances much larger than the ones
that had previously been considered. These data are thus sensitive to the
distance-dependent −κc2R term present in (67), with the fitting underscoring
the value of working with a large data sample. The fitting to the complete 138
galaxy sample is reported in [19,20], with the fitting to the 21 largest galaxies
(viz. those that are most sensitive to the −κc2R term) being reported here
and in [18]. The fitting shows that without any galactic dark matter (67)
captures the essence of the data for the entire 138 galaxy sample, with the
parameters γ∗ and γ0 continuing to take the values given in (66), and with
κ being found to take a typical cluster-sized value

κ = 9.54× 10−54 cm−2 ≈ (100 Mpc)−2. (69)

In the figures we present the actual fitting to the 21 galaxy sample with
all details being given in [18,19,20]. In the figures the rotational velocities
and errors (in km sec−1) are plotted as a function of radial distance (in kpc).
For each galaxy we exhibit the contribution due to the luminous Newto-
nian term alone (dashed curve), the contribution from the two linear terms
alone (dot dashed curve), the contribution from the two linear terms and
the quadratic terms combined (dotted curve), with the full curve showing
the total contribution. Because the data go out to such large distances the
data are sensitive to the rise in velocity associated with the linear poten-
tial terms, and it is here that the quadratic term acts to actually arrest the
rise altogether (dotted curve) and cause all rotation velocities to ultimately
fall. Moreover, since v2 cannot be negative, beyond a distance R of order
γ0/κ = 3.21× 1023 cm or so there could no longer be any bound galactic or-
bits, with galaxies thus having a natural way of terminating, and with global
physics thus imposing a natural limit on the size of galaxies. To illustrate
this we plot the rotation velocity curves for the galaxies UGC 128 and Malin
1 over an extended range.7

7 For galaxies the N∗γ∗ term in (68) is never larger than of order the γ0 term
since for galaxies the number of stars N∗ is never bigger than of order 1011. Hence
for galaxies the maximum size associated with the distance in which the right-hand
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It is important to appreciate that the fits provided by conformal gravity
(and likewise those provided by other alternate theories such as Milgrom’s
MOND theory [21] and Moffat’s MSTG/SVTG theory [22]) are predictions.
Specifically, for all these theories the only input one needs is the photometric
and HI gas data, and the only free parameter is the M/L ratio for each given
galaxy, with rotation velocities then being determined. That these highly
constrained alternate theories all work is because not only do they each
possess an either derived or postulated underlying universal scale (a derived
γ0 = 2(−K)1/2 = 3.06 × 10−30 cm−1 for conformal gravity, a0/c

2 = 1.33 ×
10−29 cm−1 for MOND and G0M0/r

2
0c

2 = 7.67 × 10−29 cm−1 for MSTG),
all of the 138 galaxies in the sample possess it too. Specifically, despite the
huge variation in luminosity and surface brightness across the 138 galaxy
sample, within one order of magnitude the measured values of the centripetal
accelerations (v2/c2R)last at the last data point in each galaxy are all found
to cluster around a value of 3 × 10−30 cm−1 or so. For the 21 large galaxy
sample for instance the values for v2/c2R all lie within the narrow range
(0.97− 5.83)× 10−30 cm−1.

It should also be noted that while the fits provided by conformal gravity
are predictions, in contrast, dark matter fitting to galactic data works quite
differently. There one first needs to know the velocities so that one can then
ascertain the needed amount of dark matter, i.e. in its current formulation
dark matter is only a parametrization of the velocity discrepancies that are
observed and is not a prediction of them. Dark matter theory has yet to
develop to the point where it is able to predict rotation velocities given a
knowledge of the luminous distribution alone (or explain the near universality
found for (v2/c2R)last). Thus dark matter theories, and in particular those
theories that produce dark matter halos in the early universe, are currently
unable to make an a priori determination as to which halo is to go with
which particular luminous matter distribution, and need to fine-tune halo
parameters to luminous parameters galaxy by galaxy. In the NFW CDM
simulations [23] for instance, one finds generic spherical halo profiles close in
form to σ(r) = σ0/[r(r+r0)

2] (as then cut off at some rmax), but with the halo
parameters σ0, r0 and rmax needing to be fixed galaxy by galaxy. In addition
to the galactic mass to light ratios, this requires 414 further parameters for
the 138 galaxy sample (or a further 276 parameters for isothermal halo type
models). No such fine-tuning shortcomings appear in conformal gravity, and
if standard gravity is to be the correct description of gravity, then a universal
formula akin to the one given in (67) and the existence of the universal γ0
and κ parameters would need to be derived by dark matter theory.

The conformal gravity fits are also noteworthy in that conformal gravity
was not at all developed for the purpose of addressing the dark matter prob-
lem. Rather, it was first advocated by the present author [24] solely because
it has a symmetry that could address the cosmological constant problem.
However, once the starting action of (9) is assumed, one can then proceed

side of (68) vanishes is never larger than of order 100 kiloparsec. For clusters of
galaxies N∗ is of order 1000 times larger as clusters typically contain 1000 galaxies.
From (68) the maximum allowed size for clusters is then well into the megaparsec
region.
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purely deductively and derive the rotation curve formula given in (67), a
thus purely theoretical first principles approach. Moreover, since our study
of (67) then establishes that global physics has an influence on local galactic
motions, the invoking of dark matter in galaxies could potentially be noth-
ing more than an attempt to describe global physics effects in purely local
galactic terms.

10 Connecting Conformal and Einstein Gravity

In a recent paper ’t Hooft [2] has found an interesting connection between
Einstein gravity and conformal gravity. In standard treatments of quantum
Einstein gravity one makes a perturbative expansion in the metric and gen-
erates multi-loop Feynman diagrams. Each perturbative order requires a new
counter-term, with the nth-order one being a function of the nth-power of
the Riemann tensor and its contractions. With the series not terminating,
Einstein gravity is rendered non-renormalizable.

In his paper ’t Hooft proposes a very different approach, one that is
highly nonlinear. Specifically, instead of evaluating the path integral as a
perturbative series in the metric components gµν(x), he proposes to treat the
conformal factor in the metric as an independent degree of freedom. Specifi-
cally, he makes a conformal transformation on the (non-conformal invariant)
Einstein-Hilbert action of the form gµν(x) = ω2(x)ĝµν (x), to obtain

IEH = −
1

16πG

∫

d4x(−ĝ)1/2
(

ω2R̂α
α − 6ĝµν∂µω∂νω

)

, (70)

with everything in IEH now being evaluated in a geometry with metric
ĝµν(x).

8 Then instead of taking the path integral measure to be of the
standard Dgµν form, ’t Hooft proposes that it be taken to be of the form
DωD(gµν/ω

2) = DωDĝµν .
The utility of this approach is that since the ω dependence in IEH is

quadratic, the Dω path integral can be done analytically. However, in order
for the path integral to be bounded one needs to give ω an imaginary part.
With this choice, the ω path integral will generate an effective action IEFF of
the form Tr ln[ĝµν∇̂µ∇̂ν + (1/6)R̂α

α], and after dimensional regularization
is found not to generate an infinite set of divergent terms at all, but rather
to only generate just one divergent term, viz. the logarithmically divergent

IEFF =
C

120

∫

d4x(−ĝ)1/2[R̂µνR̂µν −
1

3
(R̂α

α)
2], (71)

with C being the very same logarithmically divergent constant that had
appeared in (16).

8 In deriving (70) we note that if set gµν(x) = ω2(x)ĝµν(x) we obtain

(−g)1/2Rα
α(gµν) = (−ĝ)1/2[ω2R̂α

α(ĝµν) + 6ḡαβω∇̂α∇̂βω] where both R̂α
α(ĝµν)

and the ∇̂α derivatives are evaluated in a geometry with metric ĝµν(x). An inte-
gration by parts then yields (70).
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In (71) we immediately recognize the conformal gravity action. Since the
action in (70) is the same action as that obeyed by a conformally coupled
scalar field, and the ω path integral measure is the same as that of a scalar
field, everything is conformal, and the ω path integral can only generate
a conformal invariant effective action – hence (71). Through the unusual
treatment of the conformal factor we thus find a connection between Einstein
gravity and conformal gravity.

From the perspective of Einstein gravity, the utility of (71) is that since
conformal gravity is renormalizable, the subsequent Dĝµν integration of IEFF

should not generate any additional counter-terms, while the non-leading
terms contained in Tr ln[ĝµν∇̂µ∇̂ν+(1/6)R̂α

α] would generate contributions
to the path integration that could potentially be finite. One still has to deal
with the divergent C term in (71), and rather than have it renormalized (say
by adding on an intrinsic conformal IW term), ’t Hooft explores the possibil-
ity that C remain uncanceled, and we refer the reader to his paper for details.
(With C appearing with the same overall sign in (16) and (71), and with a
gauge field path integration over its kinetic energy having the same sign too
[2], an interplay between fermionic and bosonic fields cannot cancel C – with
massless superpartner fields not being able to effect the same cancellation in
a curved background that they can achieve in a flat one.)

While we thus generate a conformal action if we start with an Einstein
action, from the perspective of pure conformal gravity, conformal invariance
prevents one from including an Einstein term in the fundamental action at
all.9 However, in a pure conformal theory one still needs to use a measure
that is conformal invariant. Now the metric itself is not conformal invariant,
and hence neither is the Dgµν path integration measure. However, the quan-

tity gµν/(−g)
1/4 is conformal invariant and thus so is an integration measure

of the form D(gµν/(−g)
1/4) (and analogously D((−g)3/16ψ̄)D((−g)3/16ψ)

for fermions). In order to simplify the measure one would like to work in a
conformal gauge in which the determinant of the metric is fixed to a con-
venient value such as one. And while it needs to be explored in detail, it is
possible that adding an Einstein term to the conformal action and taking
the measure to be of the form D(−g)1/8D(gµν/(−g)

1/4) might then serve
as an appropriate conformal gauge fixing procedure. The fact that there
would only be nine independent D(gµν/(−g)

1/4) terms parallels the fact
that the perturbative IW of (22) only depends on the traceless 9-component
Kµν = hµν−(1/4)ηµνηαβh

αβ . Additionally, the fact that one needs to give ω
an imaginary part in order to obtain a well-defined path integral parallels the
structure we found for the conformal theory, with unitarity being achieved
by having the gravitational field be anti-Hermitian.

9 While conformal invariance excludes a fundamental Einstein-Hilbert ac-
tion, various authors have discussed the possibility that one might be in-
duced or derived starting from the conformal gravity action. See e.g.
S. L. Adler, Rev. Mod. Phys. 54, 729 (1982); A. Zee, Ann. Phys. (N. Y.) 151,
431 (1983); J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632
[hep-th].

http://arxiv.org/abs/1105.5632
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11 Summary

The present paper is the fifth in a series of publications in the journal on con-
formal gravity by the author, with much of the earlier work on the conformal
theory having been reviewed in the previous four [25,26,27,28]. In this re-
view we have discussed some recent developments in the field and presented
the case that can currently be made for conformal gravity. In particular we
have shown how the conformal theory can quite naturally handle some of
the most troublesome problems in physics, the quantum gravity problem,
the vacuum energy problem, and the dark matter problem, being able to do
so in the four spacetime dimensions for which there is evidence. As detailed
in [1] much more still needs to be done: anisotropy of the cosmic microwave
background, large scale structure, cluster dynamics and lensing by clusters
(especially in light of the recently found global −κc2R term in (67) and
(68)), orbit decays of binary pulsars and gravity waves, solving the primor-
dial deuterium problem that conformal nucleosynthesis has.10 For all of these
applications we only need to consider the particle contribution to the finite
(32), with the contribution of the vacuum sector including the cosmological
constant having been taken care of by (31). All of these issues should eventu-
ally prove definitive for the conformal theory, especially since it has none of
the freedom associated with the difficult to pin down and still highly elusive
dark matter and dark energy present in the standard theory.11 The highly
constrained conformal gravity fits to galactic rotation curves have as yet no
parallel in dark matter theory where parameters need to be fine-tuned galaxy
by galaxy, and its natural solution to the cosmological constant problem has
as yet no parallel in standard cosmology where Λ needs to be fine-tuned to
a degree without precedent in physics. To conclude, we note that at the be-
ginning of the 20th century studies of black-body radiation on microscopic
scales led to a paradigm shift in physics. Thus it could that at the beginning
of the 21st century studies of black-body radiation, this time on macroscopic
cosmological scales, might be presaging a paradigm shift all over again.

Acknowledgements This paper is based in part on a presentation made by the
author at the International Conference on Two Cosmological Models, Universidad
Iberoamericana, Mexico City, November 2010. The author wishes to thank Dr. J.
Auping and Dr. A. V. Sandoval for the kind hospitality of the conference.

10 Many of these issues involve the growth of cosmological inhomogeneities and
their interplay with the cosmological background as exhibited in (67). A first step
toward addressing these issues and in developing conformal cosmological perturba-
tion theory in general has recently been taken in P. D. Mannheim, Cosmological
perturbations in conformal gravity, arXiv:1109.4119 [gr-qc]. It will be of interest to
ascertain the degree to which conformal cosmological fluctuation theory is aware
of the γ0 and κ scales, especially since κ is a matter fluctuation moment integral.
11 In passing we note that even if some dark matter candidate particles are found
in an accelerator experiment, to establish that such particles contribute to a possible
dark matter halo in the Milky Way Galaxy, one would need to determine their local
galactic density. For dark matter to not be excluded, the parameter space allowed
by dark matter detection in an accelerator experiment would have to not conflict
with the parameter space that has already been excluded by the non-detection to
date of dark matter in non-accelerator experiments.

http://arxiv.org/abs/1109.4119
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Fig. 1 Fitting to the rotational velocities in km sec−1 as a function of radial
distance in kpc
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