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ABSTRACT  The derivation of the redshift (z)-distance Y)
relation in the chronometric theory of the Cosmos is ampli-
fied. The basic physical quantities are represented by pre-
cisely defined self-adjoint operators in global Hilbert spaces.
Computations yielding expli;cit bounds for the deviation of
the tﬂeoretical prediction from the relation z = tan¥(r/2
(where R denotes the radius of the universe), earlier deriv
employing less formal procedures, are carried out for: (a) a
cut-off plane wave in two dimensions; (b) a scalar spherical
wave in four dimensions; (c) the same as (b) with appropriate
incorporation of the photon spin. Both this deviation and the
ﬁuantum) dispersion in redshift are shown to be unobserva-

y small. A parallel classical treatment is possible and leads
to similar results.

1. Introduction. The chronometric theory (1-3) is a modi-
fication of special relativity whose salient features are: (a)
globally, space is spherical, although locally space-time is
Minkowskian; (b) the physical time (or dually, energy) dif-
fers globally from that of special relativity, although for lo-
calized states the difference is unobservably small; (c) tech-
nically, the theory is based on considerations of symmetry,
and in particular group-theoretic properties of the Maxwell
equations; Riemannian geometry is only incidental. Its chief
and definitive novelty is (b), which directly implies a loss of
special relativistic energy for particles freely propagated
over large distances, and does so without infringement of
Lorentz invariance or conservation of the total energy. Phi-
losophically, (b) represents a continuation of the nonanthro-
pocentric tradition, in that it distinguishes between the ob-
served time xo, which takes the same form as in special rela-
tivity, and global physical time ¢, which is synchronous with
x¢ in the short run within terms of third or higher order. The
impossibility of direct observation of t—indirectly, it may
be observed via the redshift—is partially in the direction of
the indeterminacy principle, but differs in part in that it
represents a limitation of human scale and facilities, rather
than an inherent limitation of nature.

While these are substantial modifications, the theory is in
a way qualitatively quite limited, being primarily kinemati-
cal. There is no direct dynamical content, i.e., statement as
to the forms of the interactions between free systems, apart
from the implication of a slightly modified symmetry group.
This, however, deforms into (or has as a “limiting case,” in
Minkowski’s term, or “contracts to,” in Wigner’s term) the
symmetry group of special relativity, i.e., the inhomo-
geneous Lorentz group augmented by scale transformations,
as the radius R of the spherical space component of the
chronometric cosmos becomes infinite. As a theory of free
systems in reference space, it appears to meet all physically
indicated general requirements of temporal and spatial ho-
mogeneity and isotropy: Lorentz invariance, caysality and
finiteness of propagation velocity, and positivity of the ener-
gy. It provides thereby a possible basis for quantum field
theory which appears conceptually as appropriate as special
relativity.
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From the standpoint of general relativity, the chronome-
tric cosmos provides a proper model for empty reference
space by virtue of its conformal flatness. From the stand-
point of group-invariance the theory is terminal in that its
symmetry group cannot be obtained by the deformation of
any other symmetry group of the same dimension (ref. 4, p.
264). Indeed, the theory was originally developed for ele-
mentary -particle applications, and it enjoys in particular the
possibility of discrete mass multiplets of the type which are
forbidden by the O’Raifeartaigh theorem (5, 6) for a broad
class of models based on special relativity.* From a general
standpoint, an interesting feature is that the physical inter-
pretations of the generators of the group as energy, angular
momenta, etc., are completely fixed by the algebra of the
group, as are fundamental physical units by choosing the
non-vanishing structure constants of the group to have the
values 1. These units may otherwise be specified by setting
h =c¢ = R = 1, where R is the radius of space, as is done
throughout this note.

The chronometric redshift arises not as a dynamical ef-
fect, but solely from the phenomenological postulate that
the wavelength of photaons as measured is inherently scale-
covariant. That is to say, if the conventional standard of
length is diminished by the factor A, then the measured
wavelength is diminished by the same factor, not merely ap-
proximately, but in principle completely exactly, by virtue
of the nature and limitations of the measuring process. But
in a symmetrical curved universe, such as the chronometric
cosmos, there is no a priori reason for the energy (or corre-
sponding notions of wavelength or time) to be scale-covar-
iant in this sense. The radius of the space component of the
chronometric cosmos M provides in fact a distinguished dis-
tance scale, albeit one not directly accessible to a human ob-
server. While global changes of scale are applicable in M,
the natural energy and time in M are not correspondingly
scale-covariant. Moreover, it is only in the small, and there
only within terms of order R™1, that a change of scale leaves

* The treatment of the scalar case in (7) is readily extended to fields
of higher spin. Fields representing particles of a given massm > 0
are obtained by restriction of the full symmetry group SO(4,2) of
the chronometric theory, in its natural action on scalar, spinor,
and other fields, to the subgroup SO(3,2) generated by the chro-
nometric energy and homogeneous Lorentz transformations.
More specifically, such particles are represented by vectors in the
ei§enspace of the Casimir operator C of SO(3,2) with eigenvalue
m2. As the radius R of the universe tends to », SO(3,2) deforms
into the inhomogeneous Lorentz group, while the equation Cy =
m2y deforms into the Klein-Gordon, Dirac, or other relativistic
wave equation. The admissible mass spectrum is further restricted
by physical requirements (unitarity, microcausality, the existence
of nontrivial local couplings, etc.) whose implications pose well-
defined mathematical problems. In particular, weak decays ap-
pear connected with non-unitary representations having unitary
composition series.
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invariant the observational separation of space-time into
time and space components.

The question of the precise theoretical description of what
is actually measured in a laboratory determination of wave-
length might appear ambiguous, were it not for the mathe-
matical fact that, apart from the chronometric time (or en-
ergy), there is locally in Minkowski space only one other pos-
sible formulation of time (or energy) which meets very gen-
eral and natural requirements of causality and symmetry,
including Lorentz-invariance: namely that of special relativ-
ity. From the chronometric standpoint, this laboratory-mea-
sured energy may be characterized as the scale-covariant
component of the true physical driving energy. More specif-
ically, in the chronometric cosmos, the total energy H can
be uniquely expressed in the form H = Hy + H}, where the
H, (i = 0,1) are respectively scale- and anti-scale-covariant,
in the sense that [H;,K] = (—1)*H;, where K is the infinitesi-
mal generator of the one-parameter group of scale transfor-
mations. In view of the Lorentz-invariance established by el-
ementary particle experiments, and the intrinsic scale covar-
iance of the laboratory measurement process, it follows that
a laboratory determination of energy can only be appro-
priately represented by Ho. The chronometric theory thus
provides an explanation for the redshift which is natural in
that the redness is automatic rather than assumed in order to
conform to observation as in Friedmann-Robertson models,
and which, unlike these models, has the properties of Lo-
rentz invariance or global conservation of energy. The theo-
ry is mathematically uniquet within its genre, assuming that
the physical Cosmos is four-dimensional and endowed with
a Lorentzian notion of causality; it involves no free parame-
ters, apart from the distance scale set by the value R of the
radius of the universe in conventional units. It predicts rela-
tions between the luminosities, redshifts, angular diameters,
and numbers of extragalactic objects which are independent
of R, or of other adjustable parameters, but are nonetheless
in excellent agreement with the observed relations for sys-
tematic samples of such objects. In contrast, the general-rela-
tivistic expanding-universe model predicts relations depen-
dent on two parameters, go and A; but there are no values of
these parameters for which the naive predictions of this
model are in good agreement with the data for large or oth-
erwise statistically cogent (e.g., complete) samples of galax-
ies, quasars, or radio sources. To be sure, satisfactory agree-
ment may be obtainable by postulating a variety of effects
dependent on redshift (such as “evolution”); but these are
derogatory to the general appeal and scientific economy of
the theory, as well as quite disruptive of its predictive
power.

It is not the purpose of this note to treat the observational
validation of the chronometric theory or the limitations of
the expansion theory; these matters are detailed in refs. 3, 8¢,
and 9, and elsewhere. Having clarified in general terms the
pature and relevance of the chronometric theory, the
present note aims to elaborate its analytical foundations, in
the form of a global and rigorous treatment of its redshift-
distance relation. This is not in itself an observed relation,
but only elementary geometry is involved in the deduction

 More specifically, there is only one type of local observational
framework in Minkowski space other than the conventional rela-
tivistic type, which has intuitive and empirically indicated prop-
erties of temporal and spatial homogeneity and isotropy; any two
frameworks of the same type are connected by a local causality-
preserving transformation (cf. ref. 3).

$In Eq. 4 of ref. 8, 2.5 should be replaced by —2.5.
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from this theoretical relation of the predicted relations be-
tween the observed quantities cited. Earlier, technically rel-
atively simple deductions of the redshift-distance law have
been indicated in refs. 1-3; in these treatments, a photon of
wave function  was regarded as having apparent frequency
v near a point P if —i(a/at)y ~ »), near P. But, rigorously
speaking, physically realizable photons must have finite en-
ergy and spatial extent; they are not precisely plane waves;
their wave functions ¢ lie in a unique Lorentz-invariant Hil-
bert space, and the apparent frequency is properly given by
the standard principles of quantum mechanics as the expec-
tation value of the energy operator in the state {, i.e., (—i(3/
at),¥), assuming that ¥ is normalized to unit norm. This
expectation value, and the corresponding dispersion, involve
integrals over all of space. While it is physically plausible
that these may be approximated by cutoff integrals restrict-
ed to regions contained in neighborhoods of the points of
emission and observation, the crucial importance of the red-
shift-distance relation for the observational validation of the
theory, together with uncertainty as to the validity of the
plane wave representation for analysis of propagation
through very large distances, indicates importance for the
rigorous confirmation of the validity of the cutoffs by treat-
ment of the exact Hilbert space inner products. The present
note details this treatment for representative wave functions
of increasing complexity, and indicates a corresponding clas-
sical derivation.

2. The Photon Hilbert Space. With the scalar approxima-
tion generally employed in redshift considerations, a photon
may be represented by a solution ¢ of the wave equation D¢
= 0, where O = (3/0x0)2 — (3/ox1)2 — ... — (8/3%n)% n
being the number of space dimensions. Upon emission, the
photon wave function is localized in a small region of space;
mathematically its wave function ¢ vanishes outside this re-
gion, at the time in question$. Such a wave function takes
the form ¢(X) = (27)~"/2f exp [iX-K]F(K)dK, where F is a
distribution in the sense of L. Schwartz, K = (ko,k1, . . . ,kn),
X = (x0,x1, . . . ,xn), X-K = x0ko — 21k1 — ... — 24kp, and
dK = dkodk; . . . dky; and

F(K)AK = [8(ko — |EDf () + &k, + |EDf_(R)]|E|dR, [21]
where k = (ky, ... kn), dk = dky ... dky, and |k| = (ki2 +

... + k,2)V/2 The wave function ¢ is normalizable in case
Sfe(k)qk ~1dk < =, where dk = dk; ... dkn; cf. ref. 10.
The reality of ¢ is equivalent to the hermitian character of
F, ie, F(—K) = F(K), which in turn is equivalent to the
condition that f_(k) = f, (—k). In this case, setting f = f.,
f(k) may be expressed in terms of the Cauchy data at time 0
as

fk) = 2712m)y 2 |k|feit(x,00dx — ifer**p(x,0)dx], [24]

where xk = x1k1 + ... + x.k, anddx =dx, . .. dx,.

The scalar photon Hilbert space H may be defined as con-
sisting of all real normalizable solutions of the wave equa-
tion, with the inner product (¢1,¢2) = ffi(k)fa(k)k| ~1dk,
where f; is the momentum-space function corresponding to
¢ (j = 1,2), and where the action of the complex unit i is
defined by its normal action on the corresponding analytic
signal. The orthochronous conformal groups acts in H by
unitary transformations, which define thereby a continuous

§ This is the physical, mathematically real, wave function, which is
more convenient here than the corresponding positive-frequency
component, or analytic signal, which vanishes almost nowhere.
Cf., e.g., Born and Wolf (13).
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projective representation of the conformal group which ex-"

tends the more familiar representation of the inhomo-
geneous Lorentz subgroup (n being odd); and the same is
true of the solution manifolds of the Maxwell and other cited
equations. In the case of the scalar wave equation, this ac-
tion is not simply scalar transformation, but involves addi-
tional suitable multiplications, except in the special case n =
1; cf. ref. 12.

The Maxwell field is definable in terms of the second-
order form

w = Edxdx; + Edxdx, + Eydxdx, + Bdx.dx,
+ B.Jdx,dx, + Bidx,dx,,

where (E1,E2,E3) and (B),B3,B3) are the usual electric and
magnetic vectors. Maxwell’s equations take the form dw =
dw = 0, where d denotes the usual differentiation operator
on forms and ¢ is its adjoint d* with respect to the adjoint
operator * on forms, corresponding to the Minkowski metric.
The conformally invariant inner product in the form given
inref. 10 is:

(@) = [[E(R)E/(R) + ...

where the superscribed carets denote Fourier transforms.

3. Redshift Analysis for Conformally Invariant Systems.
Let U denote a unitary representation of the conformal
group G, or any covering group thereof, in the Hilbert space
K, which represents a conformally invariant physical sys-
tem, such as the Hilbert space H indicated in Sect. 2.
Among the generators of the group G are the two distin-
guished ones associated with the natural chronometric time ¢
and the special relativistic time xo; a change of Lorentz
frame or scale alters the analytic form of these times, but
does not affect the relations within the group G of the corre-
sponding generators 8/at and a/axo, apart from a physically
unobservable unitary equivalence. According to the chro-
nometric theory, the physical (driving) hamiltonian is the
operator H = —iU(a/at) corresponding to the advance of
chronometric time, while direct laboratory observations of
the energy yield only the scale-covariant component Hp =
—iU(a/ax0) of H. This component does not commute with
H and so is not conserved; after an elapsed chronometric
time s, it is represented, in the Heisenberg picture, by the
operator Ho(s) = e #HHe*H. It is a matter of pure group
theory that

+ By(k)B/(k)JH*dk,

H{s) = aH, + BH, + YK,

where H; = H — Hp and K’ = 2i[H¢,H,] (we also use K =
iK’), while

a=(1+ cos §)/2, 8 =10 — cos 5)/2 andy = sin s/2.

The redshift z is defined so that 1 + z is the factor by which
the special relativistic energy is reduced, in the state in ques-
tion; i.e., (Ho(s)) = (1 + z)~1{Hy). In order to determine z
it therefore suffices to evaluate (Hg), (H;) and (K’).
Redshift observations are basically of quasi-monochro-
matic sources. After redshifting the linewidth remains small
compared to the wavelength. Any quantum theory of the
redshift is constrained to show that the quantum dispersion
is too slight to affect the observed linewidth. The dispersion
in observed frequency is here [(Ho(s)2) — (Ho(s))2]'/2; and
it is evident that this is readily determined from the expecta-
tion values of the squares and products of Ho, H), and K’.
The Schwarz inequality implies the following explicit esti-
mates for the deviation of the observed frequency from that
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giiréri’ by the simple law z = tan?(s /2) and for the (quantum)
variance in the observed frequency:

KHJ(s) = (1/2X1 + cos sKH| < (H2M + s(K;
(His)) — (Hfs) < o®[(H) - (HA] + (H
+ LK + AHAAHH"
+ KKAPALH + (HAP)

The redshift analysis may equally well be conducted in
the Schrodinger picture, by standard quantum mechanics,
and in this form is more readily adapted to a classical treat-
ment. If the photon is emitted in the state ¥, after time s it
is, according to the chronometric theory, in the state e**Hy
=y, say, and 2z may be defined by the condition that 1 + z
is the factor by which the expectation value of Hg in the
state Y, is less than its original expectation value, in the state
. This is analytically equivalent to the computation in the
Heisenberg representation, as is also the computation of the
quantum dispersion in the observed energy.

In the classical treatment, the physical energy E is a func-
tional rather than an operator, but remains the sum of
unique scale- and anti-scale-covariant components E¢ and
E). For a localized state, E differs negligibly from the ob-
served relativistic energy Eo, but as the state becomes delo-
calized in the course of temporal evolution E¢ may diminish.
Classically, the redshift z after elapsed time s is given by the
equation: Eq(s) = (1 + z)71Ey(0), where Eo(s) denotes the
total relativistic energy of the wave at time s. As in the case
of the quantum hamiltonians, the super-relativistic energy
E, is the transform of the relativistic energy by conformal
inversion, as shown by a Poisson bracket analysis analogous
to that involving operator commutators for the quantum
case. In, e.g., the case of the wave equation in flat space, O¢
= 0, Eg takes the form: Eq = f[(grade)? + ¢?]dx, and a sim-
ple computation shows that in terms of the field at time 0
(but not at other times)

E, = (1/4)fl(grad p)* + PPlxtdx.

4. Cut-Off Plane Waves. A plane wave ¢(X) = ¢f*(x0—k2)
is not normalizable, nor does it become so when cut off spa-
tially in four space-time dimensions. However, on choosing
an axis along the direction of propagation, ¢(X) may be rep-
resented in the 2-dimensional form e#*o=*1) which be-
comes normalizable when spatially cut off.

Consider, therefore, a 2-dimensional wave emitted with
wave function ¢(x1,%0) = g(x1 — x0), where g is a function of
a single variable to be specified later. The basic operators in-
volved in the evaluation of the redshift are, as conformal
vector fields in 2-dimensional Minkowski space M: iHp =
3/ oxo: iH) = (1/4)(x0? + x12)(8/0x0) + (1/2)x0x1(8/ 3x1);

K = x(3/3x;) + x(3/0x,).
Corresponding actions on g are therefore:
Hyg(x) —> ig'(x);Hy:g(x) —> (1/4)x°g'(x);
K:gx) — xg'(x).

For wave functions of the form ¢;(x1,x0) = gj(x1 — x0) (j =
1,2), the inner product takes the form (¢1,¢2) = fZ. g1(k)
Ba(k) kdk. 1t follows that if in particular g takes the form
g(y) = G(vy), where G is a given function independent of
the emitted frequency v, the required inner products de-
pend on v in the following way: (Ho2¢,0) = 2 (Hop,¢),
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(HoKe,@) = v; (p0), (Kpo), (K2pp) = 1% (Hipe),
(HiKog,¢0) « v~ (H\20,0) « v~2. It suffices, therefore, to
evaluate the inner products when » = 1, and setting h = G,
and assuming for simplicity henceforth that h is real, the re-
quired inner products are readily expressed in terms of low-
order moments on the interval 0 < x < « of the functions
xh(x)2, x[xh(x)]2, and [xh(x)]"2.

Now specializing to the case of a cut-off plane wave, G
may be taken to have the form: G(y) = 1 + cos y when |y| <
p, where p = nx, n being an odd integer; and G(y) = 0 oth-
erwise; neglecting an irrelevant constant factor, we take con-
sequently h(x) = sin px/x(x2 — 1). The resulting integrals
may be appropriately bounded by separate estimations for
the regions 22 < 1, 22 ~ 1, and 22 » 1. When the cut-off
wave includes at least one full cycle, i.e., n 2 1, it is found
that (¢,¢) = 7n; (Ke,Ko) /(@) <53n% (Hip,H10)/{00)
< 686n*. Substituting in the inequalities given earlier, it fol-
lows that, in chronometric units:

KHy(s) — 1/2)1 + cos sXH()| < 2In%™!
+ 4n < (272 + drp.

where r = ny~! is the radius of the region outside of which
the emitted wave vanishes. Thus the deviation in the ob-
served frequency (Ho(s)) from the value given by the gen-
eral formula z = tan®(s/2) is, relative to the emitted fre-
quency, at most 27r2 + 4r. Even if the radius r of the region
within which the original emitted wave was localized were
of the apparent order of magnitude of the core of a Seyfert
galaxy, say ~1 pec, this deviation would be unobservably
small. For the radius R of the chronometric universe is 2100
Mpc, on the basis of Virgo observations and the redshift law
z = tan*(d/2R), where d is the distance to the galaxy ob-
served. It results that r < 108, and follows in turn that a
quite conservative bound for the deviation of the expected
redshift from the general law z = tan?(d/2R) is at most 1
part in 107. This is negligible relative to the intrinsic disper-
sion arising from typical motions within the source, etc.

Similar estimates apply to the expected (quantum) disper-
sion in redshift; specifically, if » denotes the emitted fre-
quency, in which there is dispersion ¢, and »’ denotes the ob-
served frequency, of quantum dispersion ¢’, then

(o’ /V? < (a/v) + 12 X 10731 + 2

The quantum line broadening AN/X is thus at most 1.1 X
10741 + 2)2, or less than the intrinsic observational disper-
sion a/v, for presently observable redshifts. It should per-
haps be noted that these deviations represent mathematical
limits, and that the true physical orders of magnitude may
well be some orders of magnitude smaller.

For a classical treatment of the same wave functions, it is
convenient to use the chronometric time and space coordi-
nates 7 and p, defined by the equations:

tan T = x1 — X2/4)Ltan p = x(1 + X?/4)\

In terins of these variables, ¢(x1,x0) = g[2v tan (p — 7)/2],
and ¢ is given after the elapsed time s by the substitution of
7 + s for 7. In this way it follows that

Eqp,) = 202 fg’'[2v tan (p — 5)/2]* cos? (s/2)
X sect [(p = s)/2]dp.

If g is localized near 0, the integrand vanishes except for p ~
s, and follows that Eo(¢s)/Eo(¢) ~ cos® (s/2), which gives
the relation z = tan?(s /2) obtained earlier. :
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From the classical standpoint, the redshift takes place
through the delocalization of the emitted wave, which re-
sults in the nontriviality of the super-relativistic energy com-
ponent Ej, which initially is S(p/v)?, and is hence unobser-
vably small. The conservation law for the total energy Eo +
E) becomes manifest when the wave equation is expressed
in the equivalent form 62¢/a72 — 42¢/ap? = 0, from which it
is evident that f[(a¢/ap)? + (3¢/a7)%]dp is conserved; the
last expression is an alternative form for the total chronome-
tric energy, consituting the classical analogue to Ho + H; as
in the operator representing —i3/a, in that it gives the in-
finitesimal temporal development (in terms of 7) as a Pois-
son bracket.

5. Spherical Waves in Four Dimensions with Gaussian
Spatial Cut-Off. In four dimensions, the spherical wave

m vr
vr

oAx,x0) = f cos vx, cos vk-xdu(k) = cos uxos
k%=1

where u denotes the uniform probability measure on the
sphere k2 = 1, is not normalizable, but becomes so on replac-
ing it by the wave function ¢, whose Cauchy data at the
time o = 0 are obtained from those of ¢ by multiplication
with e—(1/2)x%/a%)_Gince (x,0) = 0, it follows from the ear-
lier analysis that the function f,(k) associated with ¢, has
the form

sin Ixl
e dx

2f (k) = (2m)~ %2kl fe'**

which can be evaluated as
fAk) = (a/4v)e= V2a* + ki ga®slkl —  g=alkl],

The actions of Ho, Hj, and K in terms of the function f,
are, for general f:

Hy ftky —> |kIf(k); Hy: f(k) —> —(kl/4ASf;

3
K:f(R) —> —Zl(é/ak,-)(k,f).

=
Introducing the parameter n = by analogous to that em-
ployed earlier and simplifying, expressions for the inner
products are obtained which apart from simple factors de-
pend on integrals of the form [ 3,sPe~**ds, or slight variants
thereof, for b = 0,1, ... ,7. These are readily estimated, with
the (crude but adequate) results, for arbitrary n = 1:

() = 4'w32n;(K) < 3 + 23n%(H®) < 25a’n?

The bounds on (K"2) and (H;2) are of the same general
form, but somewhat smaller, than those in the preceding
section, and lead to the same conclusion: The chronometric
prediction is for a redshift-distance law which is indepen-
dent of the photon wave function (or frequency), within the
limits of feasible observation, and given by the equation z =
tan2 (r/2R); in addition to which, spectral lines remain sharp
after redshifting,

6. Large-Distance Effect of Spin-Orbit Coupling. In the
case of the full Maxwell equations only the inner products
involving H; are not deducible from the earlier scalar re-
sults. The action of iH) is to transform w into the form «’
whose coefficients are in vector form:

EE=YE + x,E + (1/2)x X B,
B'=YB + xB + (1/2x X E,
where Y denotes the scalar vector field
—(1/4)X%3/dx,) + (1/2)xK.
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In order to show that the photon spin has no significant ef-
fect on the redshift, it suffices by the Schwarz and Minkow-
ski inequalities to show that |H 0| « v|w|. The emitted
photon wave function will be assumed to be the minimal
spin 1 modification of the scalar one earlier employed in 4-
dimensional space, and we consequently take for the Fourier
transforms of the Cauchy data at time 0:

E(k) = kjklf Efk) = —kiklf E;=0
Bi(k) = (kik)f, Byk) = (kosk))f, Byk) = —(k? + kDf

The YE,, ...,YBs components of the coefficients of w’ are
the same as the scalar terms already treated, except that f is
replaced by its multiple by a simple expression which is ho-
mogeneous in the k;, of first degree. Consequently the
bounds for these components are essentially the same as in
the scalar case. The novelty lies only in the need to estimate
terms of the form (1/2)(Bsxe — Bsxs), and the like; the
terms similar to E xo vanish at xo = 0 and so do not contrib-
ute.

Computation shows that each of the E;(k) and Bi(k) is
bounded by 3kp(k|) + |k2p’(k|). Using the Minkowski
inequality it follows that

o 1/2
IH ol < orbital term + 121rm[3( f xp(x)zdx)
0

+ ( j; ®x3p’(x)2dx)m].

On the other hand, [lw|2 = (32x/3)f§xp(x)2dx. By proce-
dures similar to those earlier indicated, it follows that the
spin contribution to the bound for (H,2)1/2 is at most 1 +
2an for n = 1, and so is smaller than the orbital bound.

7. Comment. Our main results, consisting of the relation
(Ho(s)) ~ [(1 + cos s)/2](Ho(0)) and the estimate a,,,/vobs
S Gyer/ Vem, appear to be independent of the character of the
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cut-off, within wide limits, and it is only in order to obtain
rigorous explicit bounds that specific cut-offs appear neces-
sary.
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